對(duì)數(shù)與對(duì)數(shù)運(yùn)算第課時(shí)-對(duì)數(shù)的運(yùn)算-課件_第1頁(yè)
對(duì)數(shù)與對(duì)數(shù)運(yùn)算第課時(shí)-對(duì)數(shù)的運(yùn)算-課件_第2頁(yè)
對(duì)數(shù)與對(duì)數(shù)運(yùn)算第課時(shí)-對(duì)數(shù)的運(yùn)算-課件_第3頁(yè)
對(duì)數(shù)與對(duì)數(shù)運(yùn)算第課時(shí)-對(duì)數(shù)的運(yùn)算-課件_第4頁(yè)
對(duì)數(shù)與對(duì)數(shù)運(yùn)算第課時(shí)-對(duì)數(shù)的運(yùn)算-課件_第5頁(yè)
已閱讀5頁(yè),還剩83頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2.2.1對(duì)數(shù)與對(duì)數(shù)運(yùn)算第二課時(shí)對(duì)數(shù)的運(yùn)算第二章2.2.1對(duì)數(shù)與對(duì)數(shù)運(yùn)算第二章互動(dòng)課堂2隨堂測(cè)評(píng)3課后強(qiáng)化作業(yè)4預(yù)習(xí)導(dǎo)學(xué)1互動(dòng)課堂2隨堂測(cè)評(píng)3課后強(qiáng)化作業(yè)4預(yù)習(xí)導(dǎo)學(xué)1預(yù)習(xí)導(dǎo)學(xué)預(yù)習(xí)導(dǎo)學(xué)●課標(biāo)展示1.理解對(duì)數(shù)的運(yùn)算性質(zhì).2.能用換底公式將一般對(duì)數(shù)轉(zhuǎn)化成自然對(duì)數(shù)或常用對(duì)數(shù).3.了解對(duì)數(shù)在簡(jiǎn)化運(yùn)算中的作用.對(duì)數(shù)與對(duì)數(shù)運(yùn)算第課時(shí)-對(duì)數(shù)的運(yùn)算-課件●溫故知新舊知再現(xiàn)1.對(duì)數(shù)logaN(a>0,且a≠1)具有下列簡(jiǎn)單性質(zhì):(1)___________沒(méi)有對(duì)數(shù),即N_____0;(2)1的對(duì)數(shù)為_(kāi)____,即loga1=_____;(3)底的對(duì)數(shù)等于_____;即logaa=_____;(4)logaab=_____.2.對(duì)數(shù)與指數(shù)間的關(guān)系:當(dāng)a>0,a≠1時(shí),ax=N?x=__________.零和負(fù)數(shù)>0011blogaN●溫故知新零和負(fù)數(shù)>0011blogaN3.指數(shù)的運(yùn)算法則:a>0,b>0,r,s∈R,ar·as=_____,ar÷as=_____,(ar)s=_____,(ab)r=_____.ar+sar-sarsarbrar+sar-sarsarbr新知導(dǎo)學(xué)1.對(duì)數(shù)的運(yùn)算性質(zhì)logaM+logaNlogaM-logaNnlogaM新知導(dǎo)學(xué)logaM+logaNlogaM-logaNnlog對(duì)數(shù)與對(duì)數(shù)運(yùn)算第課時(shí)-對(duì)數(shù)的運(yùn)算-課件對(duì)數(shù)與對(duì)數(shù)運(yùn)算第課時(shí)-對(duì)數(shù)的運(yùn)算-課件對(duì)數(shù)與對(duì)數(shù)運(yùn)算第課時(shí)-對(duì)數(shù)的運(yùn)算-課件●自我檢測(cè)1.lg2+lg5的值為()A.2 B.5C.7 D.1[答案]D對(duì)數(shù)與對(duì)數(shù)運(yùn)算第課時(shí)-對(duì)數(shù)的運(yùn)算-課件2.log318-log32的值為()A.log316 B.log320C.log336 D.2[答案]D3.log210·lg4=________.[答案]24.log29·log278=________.[答案]2[解析]log29·log278=log232log3323=2log23·log32=2.2.log318-log32的值為()互動(dòng)課堂互動(dòng)課堂1 用logax,logay,logaz表示:對(duì)數(shù)的運(yùn)算性質(zhì)

●典例探究

11 用logax,logay,logaz表示:對(duì)數(shù)的運(yùn)算對(duì)數(shù)與對(duì)數(shù)運(yùn)算第課時(shí)-對(duì)數(shù)的運(yùn)算-課件

規(guī)律總結(jié):對(duì)于底數(shù)相同的對(duì)數(shù)式的化簡(jiǎn),常用的方法是:(1)“收”:將同底的兩對(duì)數(shù)的和(差)收成積(商)的對(duì)數(shù).(2)“拆”:將積(商)的對(duì)數(shù)拆成對(duì)數(shù)的和(差).(3)對(duì)數(shù)的化簡(jiǎn)求值一般是正用或逆用公式,對(duì)真數(shù)進(jìn)行處理,選哪種策略化簡(jiǎn),取決于問(wèn)題的實(shí)際情況,一般本著便于真數(shù)化簡(jiǎn)的原則進(jìn)行.

規(guī)律總結(jié):對(duì)于底數(shù)相同的對(duì)數(shù)式的化簡(jiǎn),常用的方法是:11對(duì)數(shù)與對(duì)數(shù)運(yùn)算第課時(shí)-對(duì)數(shù)的運(yùn)算-課件2運(yùn)用對(duì)數(shù)的運(yùn)算性質(zhì)解題

22運(yùn)用對(duì)數(shù)的運(yùn)算性質(zhì)解題2[分析]

1.當(dāng)對(duì)數(shù)的底數(shù)相同時(shí),利用對(duì)數(shù)運(yùn)算的性質(zhì),將式子轉(zhuǎn)化為只含一種或少數(shù)幾種真數(shù)的形式再進(jìn)行計(jì)算.2.先將45用2與3的冪積表示;再運(yùn)用對(duì)數(shù)的運(yùn)算法則求解.[分析]1.當(dāng)對(duì)數(shù)的底數(shù)相同時(shí),利用對(duì)數(shù)運(yùn)算的性質(zhì),將式子對(duì)數(shù)與對(duì)數(shù)運(yùn)算第課時(shí)-對(duì)數(shù)的運(yùn)算-課件對(duì)數(shù)與對(duì)數(shù)運(yùn)算第課時(shí)-對(duì)數(shù)的運(yùn)算-課件對(duì)數(shù)與對(duì)數(shù)運(yùn)算第課時(shí)-對(duì)數(shù)的運(yùn)算-課件

規(guī)律總結(jié):靈活運(yùn)用對(duì)數(shù)運(yùn)算法則進(jìn)行對(duì)數(shù)運(yùn)算,要注意法則的正用和逆用.在化簡(jiǎn)變形的過(guò)程中,要善于觀察、比較和分析,從而選擇快捷、有效的運(yùn)算方案進(jìn)行對(duì)數(shù)運(yùn)算.

規(guī)律總結(jié):靈活運(yùn)用對(duì)數(shù)運(yùn)算法則進(jìn)行對(duì)數(shù)運(yùn)算,要注意法則的正22對(duì)數(shù)與對(duì)數(shù)運(yùn)算第課時(shí)-對(duì)數(shù)的運(yùn)算-課件[分析](1)將底統(tǒng)一成以10為底的常用對(duì)數(shù);(2)等式左邊前一個(gè)對(duì)數(shù)的真數(shù)是后面對(duì)數(shù)的底數(shù),利用換底公式很容易進(jìn)行約分求解m的值.換底公式的應(yīng)用

[分析](1)將底統(tǒng)一成以10為底的常用對(duì)數(shù);(2)等式左對(duì)數(shù)與對(duì)數(shù)運(yùn)算第課時(shí)-對(duì)數(shù)的運(yùn)算-課件

規(guī)律總結(jié):關(guān)于換底公式的用途和本質(zhì):(1)換底公式的主要用途在于將一般對(duì)數(shù)式化為常用對(duì)數(shù)或自然對(duì)數(shù),然后查表求值,以此來(lái)解決對(duì)數(shù)求值的問(wèn)題.(2)換底公式的本質(zhì)是化為同底,這是解決對(duì)數(shù)問(wèn)題的基本方法.

規(guī)律總結(jié):關(guān)于換底公式的用途和本質(zhì):33對(duì)數(shù)與對(duì)數(shù)運(yùn)算第課時(shí)-對(duì)數(shù)的運(yùn)算-課件對(duì)數(shù)與對(duì)數(shù)運(yùn)算第課時(shí)-對(duì)數(shù)的運(yùn)算-課件對(duì)數(shù)與對(duì)數(shù)運(yùn)算第課時(shí)-對(duì)數(shù)的運(yùn)算-課件[錯(cuò)因分析]在對(duì)數(shù)式的變形過(guò)程中,變形前后字母的取值范圍會(huì)發(fā)生變化,這時(shí)一定要通過(guò)限制條件來(lái)保證變形的等價(jià)性.本題中,去掉對(duì)數(shù)符號(hào)后,x>0,y>0,x-2y>0,這些條件在整式中是體現(xiàn)不出來(lái)的.故應(yīng)添上或在最后進(jìn)行檢驗(yàn).對(duì)數(shù)與對(duì)數(shù)運(yùn)算第課時(shí)-對(duì)數(shù)的運(yùn)算-課件對(duì)數(shù)與對(duì)數(shù)運(yùn)算第課時(shí)-對(duì)數(shù)的運(yùn)算-課件(2013~2014南陽(yáng)高一檢測(cè))作為對(duì)數(shù)運(yùn)算法則:lg(a+b)=lga+lgb(a>0,b>0)是不正確的.但對(duì)一些特殊值是成立的,例如:lg(2+2)=lg2+lg2.那么,對(duì)于所有使lg(a+b)=lga+lgb(a>0,b>0)成立的a,b應(yīng)滿足的函數(shù)表達(dá)式a=f(b)為_(kāi)_______.(2013~2014南陽(yáng)高一檢測(cè))作為對(duì)數(shù)運(yùn)算法則:lg(a對(duì)數(shù)與對(duì)數(shù)運(yùn)算第課時(shí)-對(duì)數(shù)的運(yùn)算-課件隨堂測(cè)評(píng)隨堂測(cè)評(píng)[答案]A[答案]A2.log38·log23=()A.2 B.3C.4 D.9[答案]B3.已知a=log32,那么log38-2log36用a表示為()A.a(chǎn)-2 B.5a-2C.3a-(1+a)2 D.3a-a2-1[答案]A對(duì)數(shù)與對(duì)數(shù)運(yùn)算第課時(shí)-對(duì)數(shù)的運(yùn)算-課件對(duì)數(shù)與對(duì)數(shù)運(yùn)算第課時(shí)-對(duì)數(shù)的運(yùn)算-課件對(duì)數(shù)與對(duì)數(shù)運(yùn)算第課時(shí)-對(duì)數(shù)的運(yùn)算-課件對(duì)數(shù)與對(duì)數(shù)運(yùn)算第課時(shí)-對(duì)數(shù)的運(yùn)算-課件對(duì)數(shù)與對(duì)數(shù)運(yùn)算第課時(shí)-對(duì)數(shù)的運(yùn)算-課件2.2.1對(duì)數(shù)與對(duì)數(shù)運(yùn)算第二課時(shí)對(duì)數(shù)的運(yùn)算第二章2.2.1對(duì)數(shù)與對(duì)數(shù)運(yùn)算第二章互動(dòng)課堂2隨堂測(cè)評(píng)3課后強(qiáng)化作業(yè)4預(yù)習(xí)導(dǎo)學(xué)1互動(dòng)課堂2隨堂測(cè)評(píng)3課后強(qiáng)化作業(yè)4預(yù)習(xí)導(dǎo)學(xué)1預(yù)習(xí)導(dǎo)學(xué)預(yù)習(xí)導(dǎo)學(xué)●課標(biāo)展示1.理解對(duì)數(shù)的運(yùn)算性質(zhì).2.能用換底公式將一般對(duì)數(shù)轉(zhuǎn)化成自然對(duì)數(shù)或常用對(duì)數(shù).3.了解對(duì)數(shù)在簡(jiǎn)化運(yùn)算中的作用.對(duì)數(shù)與對(duì)數(shù)運(yùn)算第課時(shí)-對(duì)數(shù)的運(yùn)算-課件●溫故知新舊知再現(xiàn)1.對(duì)數(shù)logaN(a>0,且a≠1)具有下列簡(jiǎn)單性質(zhì):(1)___________沒(méi)有對(duì)數(shù),即N_____0;(2)1的對(duì)數(shù)為_(kāi)____,即loga1=_____;(3)底的對(duì)數(shù)等于_____;即logaa=_____;(4)logaab=_____.2.對(duì)數(shù)與指數(shù)間的關(guān)系:當(dāng)a>0,a≠1時(shí),ax=N?x=__________.零和負(fù)數(shù)>0011blogaN●溫故知新零和負(fù)數(shù)>0011blogaN3.指數(shù)的運(yùn)算法則:a>0,b>0,r,s∈R,ar·as=_____,ar÷as=_____,(ar)s=_____,(ab)r=_____.ar+sar-sarsarbrar+sar-sarsarbr新知導(dǎo)學(xué)1.對(duì)數(shù)的運(yùn)算性質(zhì)logaM+logaNlogaM-logaNnlogaM新知導(dǎo)學(xué)logaM+logaNlogaM-logaNnlog對(duì)數(shù)與對(duì)數(shù)運(yùn)算第課時(shí)-對(duì)數(shù)的運(yùn)算-課件對(duì)數(shù)與對(duì)數(shù)運(yùn)算第課時(shí)-對(duì)數(shù)的運(yùn)算-課件對(duì)數(shù)與對(duì)數(shù)運(yùn)算第課時(shí)-對(duì)數(shù)的運(yùn)算-課件●自我檢測(cè)1.lg2+lg5的值為()A.2 B.5C.7 D.1[答案]D對(duì)數(shù)與對(duì)數(shù)運(yùn)算第課時(shí)-對(duì)數(shù)的運(yùn)算-課件2.log318-log32的值為()A.log316 B.log320C.log336 D.2[答案]D3.log210·lg4=________.[答案]24.log29·log278=________.[答案]2[解析]log29·log278=log232log3323=2log23·log32=2.2.log318-log32的值為()互動(dòng)課堂互動(dòng)課堂1 用logax,logay,logaz表示:對(duì)數(shù)的運(yùn)算性質(zhì)

●典例探究

11 用logax,logay,logaz表示:對(duì)數(shù)的運(yùn)算對(duì)數(shù)與對(duì)數(shù)運(yùn)算第課時(shí)-對(duì)數(shù)的運(yùn)算-課件

規(guī)律總結(jié):對(duì)于底數(shù)相同的對(duì)數(shù)式的化簡(jiǎn),常用的方法是:(1)“收”:將同底的兩對(duì)數(shù)的和(差)收成積(商)的對(duì)數(shù).(2)“拆”:將積(商)的對(duì)數(shù)拆成對(duì)數(shù)的和(差).(3)對(duì)數(shù)的化簡(jiǎn)求值一般是正用或逆用公式,對(duì)真數(shù)進(jìn)行處理,選哪種策略化簡(jiǎn),取決于問(wèn)題的實(shí)際情況,一般本著便于真數(shù)化簡(jiǎn)的原則進(jìn)行.

規(guī)律總結(jié):對(duì)于底數(shù)相同的對(duì)數(shù)式的化簡(jiǎn),常用的方法是:11對(duì)數(shù)與對(duì)數(shù)運(yùn)算第課時(shí)-對(duì)數(shù)的運(yùn)算-課件2運(yùn)用對(duì)數(shù)的運(yùn)算性質(zhì)解題

22運(yùn)用對(duì)數(shù)的運(yùn)算性質(zhì)解題2[分析]

1.當(dāng)對(duì)數(shù)的底數(shù)相同時(shí),利用對(duì)數(shù)運(yùn)算的性質(zhì),將式子轉(zhuǎn)化為只含一種或少數(shù)幾種真數(shù)的形式再進(jìn)行計(jì)算.2.先將45用2與3的冪積表示;再運(yùn)用對(duì)數(shù)的運(yùn)算法則求解.[分析]1.當(dāng)對(duì)數(shù)的底數(shù)相同時(shí),利用對(duì)數(shù)運(yùn)算的性質(zhì),將式子對(duì)數(shù)與對(duì)數(shù)運(yùn)算第課時(shí)-對(duì)數(shù)的運(yùn)算-課件對(duì)數(shù)與對(duì)數(shù)運(yùn)算第課時(shí)-對(duì)數(shù)的運(yùn)算-課件對(duì)數(shù)與對(duì)數(shù)運(yùn)算第課時(shí)-對(duì)數(shù)的運(yùn)算-課件

規(guī)律總結(jié):靈活運(yùn)用對(duì)數(shù)運(yùn)算法則進(jìn)行對(duì)數(shù)運(yùn)算,要注意法則的正用和逆用.在化簡(jiǎn)變形的過(guò)程中,要善于觀察、比較和分析,從而選擇快捷、有效的運(yùn)算方案進(jìn)行對(duì)數(shù)運(yùn)算.

規(guī)律總結(jié):靈活運(yùn)用對(duì)數(shù)運(yùn)算法則進(jìn)行對(duì)數(shù)運(yùn)算,要注意法則的正22對(duì)數(shù)與對(duì)數(shù)運(yùn)算第課時(shí)-對(duì)數(shù)的運(yùn)算-課件[分析](1)將底統(tǒng)一成以10為底的常用對(duì)數(shù);(2)等式左邊前一個(gè)對(duì)數(shù)的真數(shù)是后面對(duì)數(shù)的底數(shù),利用換底公式很容易進(jìn)行約分求解m的值.換底公式的應(yīng)用

[分析](1)將底統(tǒng)一成以10為底的常用對(duì)數(shù);(2)等式左對(duì)數(shù)與對(duì)數(shù)運(yùn)算第課時(shí)-對(duì)數(shù)的運(yùn)算-課件

規(guī)律總結(jié):關(guān)于換底公式的用途和本質(zhì):(1)換底公式的主要用途在于將一般對(duì)數(shù)式化為常用對(duì)數(shù)或自然對(duì)數(shù),然后查表求值,以此來(lái)解決對(duì)數(shù)求值的問(wèn)題.(2)換底公式的本質(zhì)是化為同底,這是解決對(duì)數(shù)問(wèn)題的基本方法.

規(guī)律總結(jié):關(guān)于換底公式的用途和本質(zhì):33對(duì)數(shù)與對(duì)數(shù)運(yùn)算第課時(shí)-對(duì)數(shù)的運(yùn)算-課件對(duì)數(shù)與對(duì)數(shù)運(yùn)算第課時(shí)-對(duì)數(shù)的運(yùn)算-課件對(duì)數(shù)與對(duì)數(shù)運(yùn)算第課時(shí)-對(duì)數(shù)的運(yùn)算-課件[錯(cuò)因分析]在對(duì)數(shù)式的變形過(guò)程中,變形前后字母的取值范圍會(huì)發(fā)生變化,這時(shí)一定要通過(guò)限制條件來(lái)保證變形的等價(jià)性.本題中,去掉對(duì)數(shù)符號(hào)后,x>0,y>0,x-2y>0,這些條件在整式中是體現(xiàn)不出來(lái)的.故應(yīng)添上或在最后進(jìn)行檢驗(yàn).對(duì)數(shù)與對(duì)數(shù)運(yùn)算第課時(shí)-對(duì)數(shù)的運(yùn)算-課件對(duì)數(shù)與對(duì)數(shù)運(yùn)算第課時(shí)-對(duì)數(shù)的運(yùn)算-課件(2013~2014南陽(yáng)高一檢測(cè))作為對(duì)數(shù)運(yùn)算法則:lg(a+b)=lga+lgb(a>0,b>0)是不正確的.但對(duì)一些特殊值是成立的,例如:lg(2+2)=lg2+lg2.那么,對(duì)于所有使lg(a+b)=lga+lgb(a>0,b>0)成立的a,b應(yīng)滿足的函數(shù)表達(dá)式a=f(b)為_(kāi)_______.(2013~2014南陽(yáng)高一檢測(cè))作為對(duì)數(shù)運(yùn)算法則:lg(a對(duì)數(shù)與對(duì)數(shù)運(yùn)算第課時(shí)-對(duì)數(shù)的運(yùn)算-課件隨堂測(cè)評(píng)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論