版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023年高考數(shù)學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)為虛數(shù)單位,為復數(shù),若為實數(shù),則()A. B. C. D.2.已知向量,且,則m=()A.?8 B.?6C.6 D.83.某校團委對“學生性別與中學生追星是否有關(guān)”作了一次調(diào)查,利用列聯(lián)表,由計算得,參照下表:0.010.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828得到正確結(jié)論是()A.有99%以上的把握認為“學生性別與中學生追星無關(guān)”B.有99%以上的把握認為“學生性別與中學生追星有關(guān)”C.在犯錯誤的概率不超過0.5%的前提下,認為“學生性別與中學生追星無關(guān)”D.在犯錯誤的概率不超過0.5%的前提下,認為“學生性別與中學生追星有關(guān)”4.若a>b>0,0<c<1,則A.logac<logbc B.logca<logcb C.a(chǎn)c<bc D.ca>cb5.設(shè),則復數(shù)的模等于()A. B. C. D.6.如圖所示,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,其中左視圖中三角形為等腰直角三角形,則該幾何體外接球的體積是()A. B.C. D.7.已知正四面體的內(nèi)切球體積為v,外接球的體積為V,則()A.4 B.8 C.9 D.278.已知命題:,,則為()A., B.,C., D.,9.已知集合,,若,則()A.或 B.或 C.或 D.或10.函數(shù)的大致圖像為()A. B.C. D.11.如圖,在中,點,分別為,的中點,若,,且滿足,則等于()A.2 B. C. D.12.“十二平均律”是通用的音律體系,明代朱載堉最早用數(shù)學方法計算出半音比例,為這個理論的發(fā)展做出了重要貢獻.十二平均律將一個純八度音程分成十二份,依次得到十三個單音,從第二個單音起,每一個單音的頻率與它的前一個單音的頻率的比都等于.若第一個單音的頻率為f,則第八個單音的頻率為A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè),則除以的余數(shù)是______.14.一次考試后,某班全班50個人數(shù)學成績的平均分為正數(shù),若把當成一個同學的分數(shù),與原來的50個分數(shù)一起,算出這51個分數(shù)的平均值為,則_________.15.在一次體育水平測試中,甲、乙兩校均有100名學生參加,其中:甲校男生成績的優(yōu)秀率為70%,女生成績的優(yōu)秀率為50%;乙校男生成績的優(yōu)秀率為60%,女生成績的優(yōu)秀率為40%.對于此次測試,給出下列三個結(jié)論:①甲校學生成績的優(yōu)秀率大于乙校學生成績的優(yōu)秀率;②甲、乙兩校所有男生成績的優(yōu)秀率大于甲、乙兩校所有女生成績的優(yōu)秀率;③甲校學生成績的優(yōu)秀率與甲、乙兩校所有學生成績的優(yōu)秀率的大小關(guān)系不確定.其中,所有正確結(jié)論的序號是____________.16.若變量,滿足約束條件則的最大值是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)當時,求函數(shù)在處的切線方程;(2)若函數(shù)沒有零點,求實數(shù)的取值范圍.18.(12分)已知函數(shù),.(Ⅰ)判斷函數(shù)在區(qū)間上零點的個數(shù),并證明;(Ⅱ)函數(shù)在區(qū)間上的極值點從小到大分別為,,證明:19.(12分)已知函數(shù).(Ⅰ)求在點處的切線方程;(Ⅱ)求證:在上存在唯一的極大值;(Ⅲ)直接寫出函數(shù)在上的零點個數(shù).20.(12分)在數(shù)列中,已知,且,.(1)求數(shù)列的通項公式;(2)設(shè),數(shù)列的前項和為,證明:.21.(12分)某商場為改進服務(wù)質(zhì)量,隨機抽取了200名進場購物的顧客進行問卷調(diào)查.調(diào)查后,就顧客“購物體驗”的滿意度統(tǒng)計如下:滿意不滿意男4040女8040(1)是否有97.5%的把握認為顧客購物體驗的滿意度與性別有關(guān)?(2)為答謝顧客,該商場對某款價格為100元/件的商品開展促銷活動.據(jù)統(tǒng)計,在此期間顧客購買該商品的支付情況如下:支付方式現(xiàn)金支付購物卡支付APP支付頻率10%30%60%優(yōu)惠方式按9折支付按8折支付其中有1/3的顧客按4折支付,1/2的顧客按6折支付,1/6的顧客按8折支付將上述頻率作為相應事件發(fā)生的概率,記某顧客購買一件該促銷商品所支付的金額為,求的分布列和數(shù)學期望.附表及公式:.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82822.(10分)已知函數(shù),.(1)若,,求實數(shù)的值.(2)若,,求正實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
可設(shè),將化簡,得到,由復數(shù)為實數(shù),可得,解方程即可求解【詳解】設(shè),則.由題意有,所以.故選:B【點睛】本題考查復數(shù)的模長、除法運算,由復數(shù)的類型求解對應參數(shù),屬于基礎(chǔ)題2.D【解析】
由已知向量的坐標求出的坐標,再由向量垂直的坐標運算得答案.【詳解】∵,又,∴3×4+(﹣2)×(m﹣2)=0,解得m=1.故選D.【點睛】本題考查平面向量的坐標運算,考查向量垂直的坐標運算,屬于基礎(chǔ)題.3.B【解析】
通過與表中的數(shù)據(jù)6.635的比較,可以得出正確的選項.【詳解】解:,可得有99%以上的把握認為“學生性別與中學生追星有關(guān)”,故選B.【點睛】本題考查了獨立性檢驗的應用問題,屬于基礎(chǔ)題.4.B【解析】試題分析:對于選項A,,,,而,所以,但不能確定的正負,所以它們的大小不能確定;對于選項B,,,兩邊同乘以一個負數(shù)改變不等號方向,所以選項B正確;對于選項C,利用在第一象限內(nèi)是增函數(shù)即可得到,所以C錯誤;對于選項D,利用在上為減函數(shù)易得,所以D錯誤.所以本題選B.【考點】指數(shù)函數(shù)與對數(shù)函數(shù)的性質(zhì)【名師點睛】比較冪或?qū)?shù)值的大小,若冪的底數(shù)相同或?qū)?shù)的底數(shù)相同,通常利用指數(shù)函數(shù)或?qū)?shù)函數(shù)的單調(diào)性進行比較;若底數(shù)不同,可考慮利用中間量進行比較.5.C【解析】
利用復數(shù)的除法運算法則進行化簡,再由復數(shù)模的定義求解即可.【詳解】因為,所以,由復數(shù)模的定義知,.故選:C【點睛】本題考查復數(shù)的除法運算法則和復數(shù)的模;考查運算求解能力;屬于基礎(chǔ)題.6.C【解析】
作出三視圖所表示幾何體的直觀圖,可得直觀圖為直三棱柱,并且底面為等腰直角三角形,即可求得外接球的半徑,即可得外接球的體積.【詳解】如圖為幾何體的直觀圖,上下底面為腰長為的等腰直角三角形,三棱柱的高為4,其外接球半徑為,所以體積為.故選:C【點睛】本題考查三視圖還原幾何體的直觀圖、球的體積公式,考查空間想象能力、運算求解能力,求解時注意球心的確定.7.D【解析】
設(shè)正四面體的棱長為,取的中點為,連接,作正四面體的高為,首先求出正四面體的體積,再利用等體法求出內(nèi)切球的半徑,在中,根據(jù)勾股定理求出外接球的半徑,利用球的體積公式即可求解.【詳解】設(shè)正四面體的棱長為,取的中點為,連接,作正四面體的高為,則,,,設(shè)內(nèi)切球的半徑為,內(nèi)切球的球心為,則,解得:;設(shè)外接球的半徑為,外接球的球心為,則或,,在中,由勾股定理得:,,解得,,故選:D【點睛】本題主要考查了多面體的內(nèi)切球、外接球問題,考查了椎體的體積公式以及球的體積公式,需熟記幾何體的體積公式,屬于基礎(chǔ)題.8.C【解析】
根據(jù)全稱量詞命題的否定是存在量詞命題,即得答案.【詳解】全稱量詞命題的否定是存在量詞命題,且命題:,,.故選:.【點睛】本題考查含有一個量詞的命題的否定,屬于基礎(chǔ)題.9.B【解析】
因為,所以,所以或.若,則,滿足.若,解得或.若,則,滿足.若,顯然不成立,綜上或,選B.10.D【解析】
通過取特殊值逐項排除即可得到正確結(jié)果.【詳解】函數(shù)的定義域為,當時,,排除B和C;當時,,排除A.故選:D.【點睛】本題考查圖象的判斷,取特殊值排除選項是基本手段,屬中檔題.11.D【解析】
選取為基底,其他向量都用基底表示后進行運算.【詳解】由題意是的重心,,∴,,∴,故選:D.【點睛】本題考查向量的數(shù)量積,解題關(guān)鍵是選取兩個不共線向量作為基底,其他向量都用基底表示參與運算,這樣做目標明確,易于操作.12.D【解析】分析:根據(jù)等比數(shù)列的定義可知每一個單音的頻率成等比數(shù)列,利用等比數(shù)列的相關(guān)性質(zhì)可解.詳解:因為每一個單音與前一個單音頻率比為,所以,又,則故選D.點睛:此題考查等比數(shù)列的實際應用,解決本題的關(guān)鍵是能夠判斷單音成等比數(shù)列.等比數(shù)列的判斷方法主要有如下兩種:(1)定義法,若()或(),數(shù)列是等比數(shù)列;(2)等比中項公式法,若數(shù)列中,且(),則數(shù)列是等比數(shù)列.二、填空題:本題共4小題,每小題5分,共20分。13.1【解析】
利用二項式定理得到,將89寫成1+88,然后再利用二項式定理展開即可.【詳解】,因展開式中后面10項均有88這個因式,所以除以的余數(shù)為1.故答案為:1【點睛】本題考查二項式定理的綜合應用,涉及余數(shù)的問題,解決此類問題的關(guān)鍵是靈活構(gòu)造二項式,并將它展開分析,本題是一道基礎(chǔ)題.14.1【解析】
根據(jù)均值的定義計算.【詳解】由題意,∴.故答案為:1.【點睛】本題考查均值的概念,屬于基礎(chǔ)題.15.②③【解析】
根據(jù)局部頻率和整體頻率的關(guān)系,依次判斷每個選項得到答案.【詳解】不能確定甲乙兩校的男女比例,故①不正確;因為甲乙兩校的男生的優(yōu)秀率均大于女生成績的優(yōu)秀率,故甲、乙兩校所有男生成績的優(yōu)秀率大于甲、乙兩校所有女生成績的優(yōu)秀率,故②正確;因為不能確定甲乙兩校的男女比例,故不能確定甲校學生成績的優(yōu)秀率與甲、乙兩校所有學生成績的優(yōu)秀率的大小關(guān)系,故③正確.故答案為:②③.【點睛】本題考查局部頻率和整體頻率的關(guān)系,意在考查學生的理解能力和應用能力.16.9【解析】
做出滿足條件的可行域,根據(jù)圖形,即可求出的最大值.【詳解】做出不等式組表示的可行域,如圖陰影部分所示,目標函數(shù)過點時取得最大值,聯(lián)立,解得,即,所以最大值為9.故答案為:9.【點睛】本題考查二元一次不等式組表示平面區(qū)域,利用數(shù)形結(jié)合求線性目標函數(shù)的最值,屬于基礎(chǔ)題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1).(2)【解析】
(1)利用導數(shù)的幾何意義求解即可;(2)利用導數(shù)得出的單調(diào)性以及極值,從而得出的圖象,將函數(shù)的零點問題轉(zhuǎn)化為函數(shù)圖象的交點問題,由圖,即可得出實數(shù)的取值范圍.【詳解】(1)當時,,∴切線斜率,又切點∴切線方程為,即.(2),記,令得;∴的情況如下表:2+0單調(diào)遞增極大值單調(diào)遞減當時,取極大值又時,;時,若沒有零點,即的圖像與直線無公共點,由圖像知的取值范圍是.【點睛】本題主要考查了導數(shù)的幾何意義的應用,利用導數(shù)研究函數(shù)的零點問題,屬于中檔題.18.(Ⅰ)函數(shù)在區(qū)間上有兩個零點.見解析(Ⅱ)見解析【解析】
(Ⅰ)根據(jù)題意,,利用導函數(shù)研究函數(shù)的單調(diào)性,分類討論在區(qū)間的單調(diào)區(qū)間和極值,進而研究零點個數(shù)問題;(Ⅱ)求導,,由于在區(qū)間上的極值點從小到大分別為,,求出,利用導數(shù)結(jié)合單調(diào)性和極值點,即可證明出.【詳解】解:(Ⅰ),,當時,,,在區(qū)間上單調(diào)遞減,,在區(qū)間上無零點;當時,,在區(qū)間上單調(diào)遞增,,在區(qū)間上唯一零點;當時,,,在區(qū)間上單調(diào)遞減,,;在區(qū)間上唯一零點;綜上可知,函數(shù)在區(qū)間上有兩個零點.(Ⅱ),,由(Ⅰ)知在無極值點;在有極小值點,即為;在有極大值點,即為,由,即,,2…,,,,,,以及的單調(diào)性,,,,,由函數(shù)在單調(diào)遞增,得,,由在單調(diào)遞減,得,即,故.【點睛】本題考查利用導數(shù)研究函數(shù)的單調(diào)性和極值,通過導數(shù)解決函數(shù)零點個數(shù)問題和證明不等式,考查轉(zhuǎn)化思想和計算能力.19.(Ⅰ);(Ⅱ)證明見解析;(Ⅲ)函數(shù)在有3個零點.【解析】
(Ⅰ)求出導數(shù),寫出切線方程;(Ⅱ)二次求導,判斷單調(diào)遞減,結(jié)合零點存在性定理,判斷即可;(Ⅲ),數(shù)形結(jié)合得出結(jié)論.【詳解】解:(Ⅰ),,,故在點,處的切線方程為,即;(Ⅱ)證明:,,,故在遞減,又,,由零點存在性定理,存在唯一一個零點,,當時,遞增;當時,遞減,故在只有唯一的一個極大值;(Ⅲ)函數(shù)在有3個零點.【點睛】本題主要考查利用導數(shù)求切線方程,考查零點存在性定理的應用,關(guān)鍵是能夠通過導函數(shù)的單調(diào)性和零點存在定理確定導函數(shù)的零點個數(shù),進而確定函數(shù)的單調(diào)性,屬于難題.20.(1);(2)見解析.【解析】
(1)由已知變形得到,從而是等差數(shù)列,然后利用等差數(shù)列的通項公式計算即可;(2)先求出數(shù)列的通項,再利用裂項相消法求出即可.【詳解】(1)由已知,,即,又,則數(shù)列是以1為首項3為公差的等差數(shù)列,所以,即.(2)因為,則,所以,又是遞增數(shù)列,所以,綜上,.【點睛】本題考查由遞推公式求數(shù)列通項公式、裂項相消法求數(shù)列的和,考查學生的計算能力,是一道基礎(chǔ)題.21.(1)有97.5%的把握認為顧客購物體驗的滿意度與性別有關(guān);(2)67元,見解析.【解析】
(1)根據(jù)表格數(shù)據(jù)代入公式,結(jié)合臨界值即得解;(2)的可能取值為40,60,80,1,根據(jù)題意依次計算概率,列出分布列,求數(shù)學期望即可.【詳解】(1)由題得,所以,有97.5%的把握認為顧客購物體驗的滿意度與性別有關(guān).(2)由題意可知的可能取值為40,60,80,1.,,,.則的分布列為4060801所以,(元).【點睛】本題考查了統(tǒng)計和概率綜合,考查了列聯(lián)表,隨機變量的分布列和數(shù)學期望等知識點,考查了學生數(shù)據(jù)處理,綜合分析,數(shù)學運算的能力,屬于中檔題.22.(1)1(2)【解析】
(1)求得和,由,,得,令,令導數(shù)求得函數(shù)的單調(diào)性,利用,即可求解.(2)解法一:令,利用導數(shù)求得的單調(diào)性,轉(zhuǎn)化為,令
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 江蘇省揚州市邗江實驗2025屆中考生物四模試卷含解析
- 2025版電子商務(wù)與傳統(tǒng)法律沖突解析及合同簽署指引3篇
- 2024年全國體育專業(yè)單獨招生考試數(shù)學試卷試題真題(含答案)
- 抗菌藥物合理使用對耐藥菌感染的影響
- 高一化學第三單元金屬及其化合物第二講幾種重要的金屬化合物練習題
- 2024高中地理第一章宇宙的地球中3-1地球的運動學案湘教版必修1
- 2024高中語文第一單元以意逆志知人論世自主賞析擬行路難其四學案新人教版選修中國古代詩歌散文欣賞
- 2024高中語文第四單元創(chuàng)造形象詩文有別項羽之死訓練含解析新人教版選修中國古代詩歌散文欣賞
- 2024高考化學二輪復習專題突破練10B有機化學含解析
- 2024高考地理一輪復習專練28自然地理環(huán)境的整體性含解析新人教版
- 吳茱萸熱奄包
- 標準編寫培訓
- 外立面改造專項施工方案
- GB/T 4354-2008優(yōu)質(zhì)碳素鋼熱軋盤條
- GB 29518-2013柴油發(fā)動機氮氧化物還原劑尿素水溶液(AUS 32)
- 《中國國家處方集》附錄
- 消防安全值班制度
- 智慧教育典型案例:依托智慧教學 優(yōu)化英語課堂
- 偉星管-云上裝飾
- 生活飲用水消毒劑和消毒設(shè)備衛(wèi)生安全評價規(guī)范(2019年版)
- 養(yǎng)老院老年人誤食誤服防范措施及應急預案
評論
0/150
提交評論