大數(shù)據(jù)概念技術(shù)特點(diǎn)應(yīng)用與案例_第1頁(yè)
大數(shù)據(jù)概念技術(shù)特點(diǎn)應(yīng)用與案例_第2頁(yè)
大數(shù)據(jù)概念技術(shù)特點(diǎn)應(yīng)用與案例_第3頁(yè)
大數(shù)據(jù)概念技術(shù)特點(diǎn)應(yīng)用與案例_第4頁(yè)
大數(shù)據(jù)概念技術(shù)特點(diǎn)應(yīng)用與案例_第5頁(yè)
已閱讀5頁(yè),還剩2頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

大 數(shù) 據(jù)目錄一、大數(shù)據(jù)概念 1二、大數(shù)據(jù)分析 2三、大數(shù)據(jù)技術(shù) 3四、大數(shù)據(jù)特點(diǎn) 3五、大數(shù)據(jù)處理 4六、大數(shù)據(jù)應(yīng)用與案例分析 5一、大數(shù)據(jù)概念大數(shù)據(jù)"是一個(gè)體量特別大,數(shù)據(jù)類(lèi)別特別大的數(shù)據(jù)集,并且這樣的數(shù)據(jù)集無(wú)法用傳統(tǒng)數(shù)據(jù)庫(kù)工具對(duì)其內(nèi)容進(jìn)行抓取、管理和處理。"大數(shù)據(jù)"首先是指數(shù)據(jù)體量(volumes)?大,指代大型數(shù)據(jù)集,一般在10TB?規(guī)模左右,但在實(shí)際應(yīng)用中,很多企業(yè)用戶(hù)把多個(gè)數(shù)據(jù)集放在一起,已經(jīng)形成了PB級(jí)的數(shù)據(jù)量;其次是指數(shù)據(jù)類(lèi)別(variety)大,數(shù)據(jù)來(lái)自多種數(shù)據(jù)源,數(shù)據(jù)種類(lèi)和格式日漸豐富,已沖破了以前所限定的結(jié)構(gòu)化數(shù)據(jù)范疇,囊括了半結(jié)構(gòu)化和非結(jié)構(gòu)化數(shù)據(jù)。接著是數(shù)據(jù)處理速度( Velocity )快,在數(shù)據(jù)量非常龐大的情況下,也能夠做到數(shù)據(jù)的實(shí)時(shí)處理。最后一個(gè)特點(diǎn)是指數(shù)據(jù)真實(shí)性(Veracity)高,隨著社交數(shù)據(jù)、企業(yè)內(nèi)容、交易與應(yīng)用數(shù)據(jù)等新數(shù)據(jù)源的興趣,傳統(tǒng)數(shù)據(jù)源的局限被打破,企業(yè)愈發(fā)需要有效的信息之力以確保其真實(shí)性及安全性。大數(shù)據(jù)"是需要新處理模式才能具有更強(qiáng)的決策力、洞察發(fā)現(xiàn)力和流程優(yōu)化能力的海量、高增長(zhǎng)率和多樣化的信息資產(chǎn)。從數(shù)據(jù)的類(lèi)別上看,"大數(shù)據(jù)"指的是無(wú)法使用傳統(tǒng)流程或工具處理或分析的信息。它定義了那些超出正常處理范圍和大小、迫使用戶(hù)采用非傳統(tǒng)處理方法的數(shù)據(jù)集。 亞馬遜網(wǎng)絡(luò)服務(wù)(AWS)、大數(shù)據(jù)科學(xué)家 JohnRauser提到一個(gè)簡(jiǎn)單的定義:大數(shù)據(jù)就是任何超過(guò)了一臺(tái)計(jì)算機(jī)處理能力的龐大數(shù)據(jù)量。 研發(fā)小組對(duì)大數(shù)據(jù)的定義:"大數(shù)據(jù)是最大的宣傳技術(shù)、是最時(shí)髦的技術(shù),當(dāng)這種現(xiàn)象出現(xiàn)時(shí),定義就變得很混亂。"Kelly 說(shuō):"大數(shù)據(jù)是可能不包含所有的信息,但我覺(jué)得大部分是正確的。對(duì)大數(shù)據(jù)的一部分認(rèn)知在于,它是如此之大,分析它需要多個(gè)工作負(fù)載,這是AWS的定義。當(dāng)你的技術(shù)達(dá)到極限時(shí),也就是數(shù)據(jù)的極限"。大數(shù)據(jù)不是關(guān)于如何定義,最重要的是如何使用。最大的挑戰(zhàn)在于哪些技術(shù)能更好的使用數(shù)據(jù)以及大數(shù)據(jù)的應(yīng)用情況如何。這與傳統(tǒng)的數(shù)據(jù)庫(kù)相比,開(kāi)源的大數(shù)據(jù)分析工具的如Hadoop的崛起,這些非結(jié)構(gòu)化的數(shù)據(jù)服務(wù)的價(jià)值在哪里。二、大數(shù)據(jù)分析從所周知,大數(shù)據(jù)已經(jīng)不簡(jiǎn)簡(jiǎn)單單是數(shù)據(jù)大的事實(shí)了,而最重要的現(xiàn)實(shí)是對(duì)大數(shù)據(jù)進(jìn)行分析,只有通過(guò)分析才能獲取很多智能的,深入的,有價(jià)值的信息。那么越來(lái)越多的應(yīng)用涉及到大數(shù)據(jù),而這些大數(shù)據(jù)的屬性,包括數(shù)量,速度,多樣性等等都是呈現(xiàn)了大數(shù)據(jù)不斷增長(zhǎng)的復(fù)雜性,所以大數(shù)據(jù)的分析方法在大數(shù)據(jù)領(lǐng)域就顯得尤為重要,可以說(shuō)是決定最終信息是否有價(jià)值的決定性因素?;谌绱说恼J(rèn)識(shí),大數(shù)據(jù)分析普遍存在的方法理論有哪些呢?、可視化分析大數(shù)據(jù)分析的使用者有大數(shù)據(jù)分析專(zhuān)家,同時(shí)還有普通用戶(hù),但是他們二者對(duì)于大數(shù)據(jù)分析最基本的要求就是可視化分析,因?yàn)榭梢暬治瞿軌蛑庇^的呈現(xiàn)大數(shù)據(jù)特點(diǎn),同時(shí)能夠非常容易被讀者所接受,就如同看圖說(shuō)話(huà)一樣簡(jiǎn)單明了、數(shù)據(jù)挖掘算法大數(shù)據(jù)分析的理論核心就是數(shù)據(jù)挖掘算法,各種數(shù)據(jù)挖掘的算法基于不同的數(shù)據(jù)類(lèi)型和格式才能更加科學(xué)的呈現(xiàn)出數(shù)據(jù)本身具備的特點(diǎn),也正是因?yàn)檫@些被全世界統(tǒng)計(jì)學(xué)家所公認(rèn)的各種統(tǒng)計(jì)方法(可以稱(chēng)之為真理)才能深入數(shù)據(jù)內(nèi)部,挖掘出公認(rèn)的價(jià)值。另外一個(gè)方面也是因?yàn)橛羞@些數(shù)據(jù)挖掘的算法才能更快速的處理大數(shù)據(jù),如果一個(gè)算法得花上好幾年才能得出結(jié)論,那大數(shù)據(jù)的價(jià)值也就無(wú)從說(shuō)起了。、預(yù)測(cè)性分析能力大數(shù)據(jù)分析最終要的應(yīng)用領(lǐng)域之一就是預(yù)測(cè)性分析,從大數(shù)據(jù)中挖掘出特點(diǎn),通過(guò)科學(xué)的建立模型,之后便可以通過(guò)模型帶入新的數(shù)據(jù),從而預(yù)測(cè)未來(lái)的數(shù)據(jù)。、數(shù)據(jù)質(zhì)量和數(shù)據(jù)管理大數(shù)據(jù)分析離不開(kāi)數(shù)據(jù)質(zhì)量和數(shù)據(jù)管理,高質(zhì)量的數(shù)據(jù)和有效的數(shù)據(jù)管理,無(wú)論是在學(xué)術(shù)研究還是在商業(yè)應(yīng)用領(lǐng)域,都能夠保證分析結(jié)果的真實(shí)和有價(jià)值。大數(shù)據(jù)分析的基礎(chǔ)就是以上五個(gè)方面,當(dāng)然更加深入大數(shù)據(jù)分析的話(huà),還有很多很多更加有特點(diǎn)的、更加深入的、更加專(zhuān)業(yè)的大數(shù)據(jù)分析方法。三、大數(shù)據(jù)技術(shù)1、數(shù)據(jù)采集:ETL工具負(fù)責(zé)將分布的、異構(gòu)數(shù)據(jù)源中的數(shù)據(jù)如關(guān)系數(shù)據(jù)、平面數(shù)據(jù)文件等抽取到臨時(shí)中間層后進(jìn)行清洗、 轉(zhuǎn)換、集成,最后加載到數(shù)據(jù)倉(cāng)庫(kù)或數(shù)據(jù)集市中,成為聯(lián)機(jī)分析處理、數(shù)據(jù)挖掘的基礎(chǔ)。2、數(shù)據(jù)存取:關(guān)系數(shù)據(jù)庫(kù)、NOSQL、SQL等。3、基礎(chǔ)架構(gòu):云存儲(chǔ)、分布式文件存儲(chǔ)等。4、數(shù)據(jù)處理:自然語(yǔ)言處理(NLP,NaturalLanguageProcessing) 是研究人與計(jì)算機(jī)交互的語(yǔ)言問(wèn)題的一門(mén)學(xué)科。處理自然語(yǔ)言的關(guān)鍵是要讓計(jì)算機(jī)"理解"自然語(yǔ)言,所以自然語(yǔ)言處理又叫做自然語(yǔ)言理解(NLU,NaturalLanguageUnderstanding),也稱(chēng)為計(jì)算語(yǔ)言學(xué)(ComputationalLinguistics 。一方面它是語(yǔ)言信息處理的一個(gè)分支,另一方面它是人工智能(AI,ArtificialIntelligence) 的核心課題之一。5、統(tǒng)計(jì)分析:假設(shè)檢驗(yàn)、顯著性檢驗(yàn)、差異分析、相關(guān)分析、T檢驗(yàn)、方差分析、卡方分析、偏相關(guān)分析、距離分析、回歸分析、簡(jiǎn)單回歸分析、多元回歸分析、逐步回歸、回歸預(yù)測(cè)與殘差分析、嶺回歸、logistic回歸分析、曲線(xiàn)估計(jì)、因子分析、聚類(lèi)分析、主成分分析、因子分析、快速聚類(lèi)法與聚類(lèi)法、判別分析、對(duì)應(yīng)分析、多元對(duì)應(yīng)分析(最優(yōu)尺度分析)、bootstrap 技術(shù)等等。6、數(shù)據(jù)挖掘:分類(lèi)(Classification相關(guān)性分組或關(guān)聯(lián)規(guī)則(Affinity grouping描述和可視化、DescriptionandVisualization圖像,視頻,音頻等)

or

)、估計(jì)(Estimation)、預(yù)測(cè)(Predictionassociation rules)、聚類(lèi)(Clustering)、復(fù)雜數(shù)據(jù)類(lèi)型挖掘(Text,Web,

)、)、圖形7、模型預(yù)測(cè):預(yù)測(cè)模型、機(jī)器學(xué)習(xí)、建模仿真。8、結(jié)果呈現(xiàn):云計(jì)算、標(biāo)簽云、關(guān)系圖等。四、大數(shù)據(jù)特點(diǎn)要理解大數(shù)據(jù)這一概念,首先要從 "大"入手,"大"是指數(shù)據(jù)規(guī)模,大數(shù)據(jù)一般指在10TB(1TB=1024GB)規(guī)模以上的數(shù)據(jù)量。大數(shù)據(jù)同過(guò)去的海量數(shù)據(jù)有所區(qū)別,其基本特征可以用4個(gè)V來(lái)總結(jié)(Vol-ume、Variety、Value和Veloc-ity),即體量大、多樣性、價(jià)值密度低、速度快。1、 數(shù)據(jù)體量巨大。從TB級(jí)別,躍升到PB級(jí)別。2、 數(shù)據(jù)類(lèi)型繁多,如前文提到的網(wǎng)絡(luò)日志、視頻、圖片、地理位置信息,等等。3、 價(jià)值密度低。以視頻為例,連續(xù)不間斷監(jiān)控過(guò)程中,可能有用的數(shù)據(jù)僅僅有一兩秒。4、 處理速度快。1秒定律。最后這一點(diǎn)也是和傳統(tǒng)的數(shù)據(jù)挖掘技術(shù)有著本質(zhì)的不同。物聯(lián)網(wǎng)、云計(jì)算、移動(dòng)互聯(lián)網(wǎng)、車(chē)聯(lián)網(wǎng)、手機(jī)、平板電腦、PC以及遍布地球各個(gè)角落的各種各樣的傳感器,無(wú)一不是數(shù)據(jù)來(lái)源或者承載的方式。大數(shù)據(jù)技術(shù)是指從各種各樣類(lèi)型的巨量數(shù)據(jù)中,快速獲得有價(jià)值信息的技術(shù)。解決大數(shù)據(jù)問(wèn)題的核心是大數(shù)據(jù)技術(shù)。目前所說(shuō)的"大數(shù)據(jù)"不僅指數(shù)據(jù)本身的規(guī)模,也包括采集數(shù)據(jù)的工具、平臺(tái)和數(shù)據(jù)分析系統(tǒng)。大數(shù)據(jù)研發(fā)目的是發(fā)展大數(shù)據(jù)技術(shù)并將其應(yīng)用到相關(guān)領(lǐng)域,通過(guò)解決巨量數(shù)據(jù)處理問(wèn)題促進(jìn)其突破性發(fā)展。因此,大數(shù)據(jù)時(shí)代帶來(lái)的挑戰(zhàn)不僅體現(xiàn)在如何處理巨量數(shù)據(jù)從中獲取有價(jià)值的信息,也體現(xiàn)在如何加強(qiáng)大數(shù)據(jù)技術(shù)研發(fā),搶占時(shí)代發(fā)展的前沿。五、大數(shù)據(jù)處理大數(shù)據(jù)處理之一:采集大數(shù)據(jù)的采集是指利用多個(gè)數(shù)據(jù)庫(kù)來(lái)接收發(fā)自客戶(hù)端( Web、App或者傳感器形式等)的數(shù)據(jù),并且用戶(hù)可以通過(guò)這些數(shù)據(jù)庫(kù)來(lái)進(jìn)行簡(jiǎn)單的查詢(xún)和處理工作。比如,電商會(huì)使用傳統(tǒng)的關(guān)系型數(shù)據(jù)庫(kù)MySQL和Oracle等來(lái)存儲(chǔ)每一筆事務(wù)數(shù)據(jù),除此之外,Redis和MongoDB這樣的NoSQL數(shù)據(jù)庫(kù)也常用于數(shù)據(jù)的采集。在大數(shù)據(jù)的采集過(guò)程中,其主要特點(diǎn)和挑戰(zhàn)是并發(fā)數(shù)高,因?yàn)橥瑫r(shí)有可能會(huì)有成千上萬(wàn)的用戶(hù)來(lái)進(jìn)行訪(fǎng)問(wèn)和操作,比如火車(chē)票售票網(wǎng)站和淘寶,它們并發(fā)的訪(fǎng)問(wèn)量在峰值時(shí)達(dá)到上百萬(wàn),所以需要在采集端部署大量數(shù)據(jù)庫(kù)才能支撐。并且如何在這些數(shù)據(jù)庫(kù)之間進(jìn)行負(fù)載均衡和分片的確是需要深入的思考和設(shè)計(jì)。大數(shù)據(jù)處理之二:導(dǎo)入 /預(yù)處理雖然采集端本身會(huì)有很多數(shù)據(jù)庫(kù),但是如果要對(duì)這些海量數(shù)據(jù)進(jìn)行有效的分析,還是應(yīng)該將這些來(lái)自前端的數(shù)據(jù)導(dǎo)入到一個(gè)集中的大型分布式數(shù)據(jù)庫(kù),或者分布式存儲(chǔ)集群,并且可以在導(dǎo)入基礎(chǔ)上做一些簡(jiǎn)單的清洗和預(yù)處理工作。也有一些用戶(hù)會(huì)在導(dǎo)入時(shí)使用來(lái)自Twitter 的Storm來(lái)對(duì)數(shù)據(jù)進(jìn)行流式計(jì)算,來(lái)滿(mǎn)足部分業(yè)務(wù)的實(shí)時(shí)計(jì)算需求。導(dǎo)入與預(yù)處理過(guò)程的特點(diǎn)和挑戰(zhàn)主要是導(dǎo)入的數(shù)據(jù)量大,每秒鐘的導(dǎo)入量經(jīng)常會(huì)達(dá)到百兆,甚至千兆級(jí)別。大數(shù)據(jù)處理之三:統(tǒng)計(jì) /分析統(tǒng)計(jì)與分析主要利用分布式數(shù)據(jù)庫(kù),或者分布式計(jì)算集群來(lái)對(duì)存儲(chǔ)于其內(nèi)的海量數(shù)據(jù)進(jìn)行普通的分析和分類(lèi)匯總等,以滿(mǎn)足大多數(shù)常見(jiàn)的分析需求,在這方面,一些實(shí)時(shí)性需求會(huì)用到EMC的GreenPlum、Oracle的Exadata,以及基于MySQL的列式存儲(chǔ)Infobright等,而一些批處理,或者基于半結(jié)構(gòu)化數(shù)據(jù)的需求可以使用 Hadoop。統(tǒng)計(jì)與分析這部分的主要特點(diǎn)和挑戰(zhàn)是分析涉及的數(shù)據(jù)量大,其對(duì)系統(tǒng)資源,特別是I/O會(huì)有極大的占用。大數(shù)據(jù)處理之四:挖掘與前面統(tǒng)計(jì)和分析過(guò)程不同的是,數(shù)據(jù)挖掘一般沒(méi)有什么預(yù)先設(shè)定好的主題,主要是在現(xiàn)有數(shù)據(jù)上面進(jìn)行基于各種算法的計(jì)算,從而起到預(yù)測(cè)( Predict)的效果,從而實(shí)現(xiàn)一些高級(jí)別數(shù)據(jù)分析的需求。比較典型算法有用于聚類(lèi)的 Kmeans、用于統(tǒng)計(jì)學(xué)習(xí)的 SVM和用于分類(lèi)的NaiveBayes,主要使用的工具有 Hadoop的Mahout等。該過(guò)程的特點(diǎn)和挑戰(zhàn)主要是用于挖掘的算法很復(fù)雜,并且計(jì)算涉及的數(shù)據(jù)量和計(jì)算量都很大,常用數(shù)據(jù)挖掘算法都以單線(xiàn)程為主。整個(gè)大數(shù)據(jù)處理的普遍流程至少應(yīng)該滿(mǎn)足這四個(gè)方面的步驟,才能算得上是一個(gè)比較完整的大數(shù)據(jù)處理六、大數(shù)據(jù)應(yīng)用與案例分析大數(shù)據(jù)應(yīng)用的關(guān)鍵,也是其必要條件,就在于 "IT"與"經(jīng)營(yíng)"的融合,當(dāng)然,這里的經(jīng)營(yíng)的內(nèi)涵可以非常廣泛,小至一個(gè)零售門(mén)店的經(jīng)營(yíng),大至一個(gè)城市的經(jīng)營(yíng)。以下是關(guān)于各行各業(yè),不同的組織機(jī)構(gòu)在大數(shù)據(jù)方面的應(yīng)用的案例,在此申明,以下案例均來(lái)源于網(wǎng)絡(luò),本文僅作引用,并在此基礎(chǔ)上作簡(jiǎn)單的梳理和分類(lèi)。大數(shù)據(jù)應(yīng)用案例之:醫(yī)療行業(yè)SetonHealthcare是采用IBM最新沃森技術(shù)醫(yī)療保健內(nèi)容分析預(yù)測(cè)的首個(gè)客戶(hù)。該技術(shù)允許企業(yè)找到大量病人相關(guān)的臨床醫(yī)療信息,通過(guò)大數(shù)據(jù)處理,更好地分析病人的信息。在加拿大多倫多的一家醫(yī)院,針對(duì)早產(chǎn)嬰兒,每秒鐘有超過(guò)3000次的數(shù)據(jù)讀取。通過(guò)這些數(shù)據(jù)分析,醫(yī)院能夠提前知道哪些早產(chǎn)兒出現(xiàn)問(wèn)題并且有針對(duì)性地采取措施,避免早產(chǎn)嬰兒夭折。它讓更多的創(chuàng)業(yè)者更方便地開(kāi)發(fā)產(chǎn)品,比如通過(guò)社交網(wǎng)絡(luò)來(lái)收集數(shù)據(jù)的健康類(lèi)App。也許未來(lái)數(shù)年后,它們搜集的數(shù)據(jù)能讓醫(yī)生給你的診斷變得更為精確,比方說(shuō)不是通用的成人每日三次一次一片,而是檢測(cè)到你的血液中藥劑已經(jīng)代謝完成會(huì)自動(dòng)提醒你再次服藥。大數(shù)據(jù)應(yīng)用案例之:能源行業(yè)智能電網(wǎng)現(xiàn)在歐洲已經(jīng)做到了終端,也就是所謂的智能電表。在德國(guó),為了鼓勵(lì)利用太陽(yáng)能,會(huì)在家庭安裝太陽(yáng)能,除了賣(mài)電給你,當(dāng)你的太陽(yáng)能有多余電的時(shí)候還可以買(mǎi)回來(lái)。通過(guò)電網(wǎng)收集每隔五分鐘或十分鐘收集一次數(shù)據(jù),收集來(lái)的這些數(shù)據(jù)可以用來(lái)預(yù)測(cè)客戶(hù)的用電習(xí)慣等,從而推斷出在未來(lái)2~3個(gè)月時(shí)間里,整個(gè)電網(wǎng)大概需要多少電。有了這個(gè)預(yù)測(cè)后,就可以向發(fā)電或者供電企業(yè)購(gòu)買(mǎi)一定數(shù)量的電。因?yàn)殡娪悬c(diǎn)像期貨一樣,如果提前買(mǎi)就會(huì)比較便宜,買(mǎi)現(xiàn)貨就比較貴。通過(guò)這個(gè)預(yù)測(cè)后,可以降低采購(gòu)成本。維斯塔斯風(fēng)力系統(tǒng),依靠的是BigInsights軟件和IBM超級(jí)計(jì)算機(jī),然后對(duì)氣象數(shù)據(jù)進(jìn)行分析,找出安裝風(fēng)力渦輪機(jī)和整個(gè)風(fēng)電場(chǎng)最佳的地點(diǎn)。利用大數(shù)據(jù),以往需要數(shù)周的分析工作,現(xiàn)在僅需要不足1小時(shí)便可完成。大數(shù)據(jù)應(yīng)用案例之:通信行業(yè)XOCommunications通過(guò)使用IBMSPSS預(yù)測(cè)分析軟件,減少了將近一半的客戶(hù)流失率。XO現(xiàn)在可以預(yù)測(cè)客戶(hù)的行為,發(fā)現(xiàn)行為趨勢(shì),并找出存在缺陷的環(huán)節(jié),從而幫助公司及時(shí)采取措施,保留客戶(hù)。此外,IBM新的Netezza網(wǎng)絡(luò)分析加速器,將通過(guò)提供單個(gè)端到端網(wǎng)絡(luò)、服務(wù)、客戶(hù)分析視圖的可擴(kuò)展平臺(tái),幫助通信企業(yè)制定更科學(xué)、合理決策。電信業(yè)者透過(guò)數(shù)以千萬(wàn)計(jì)的客戶(hù)資料,能分析出多種使用者行為和趨勢(shì),賣(mài)給需要的企業(yè),這是全新的資料經(jīng)濟(jì)。中國(guó)移動(dòng)通過(guò)大數(shù)據(jù)分析,對(duì)企業(yè)運(yùn)營(yíng)的全業(yè)務(wù)進(jìn)行針對(duì)性的監(jiān)控、預(yù)警、跟蹤。系統(tǒng)在第一時(shí)間自動(dòng)捕捉市場(chǎng)變化,再以最快捷的方式推送給指定負(fù)責(zé)人,使他在最短時(shí)間內(nèi)獲知市場(chǎng)行情。NTTdocomo把手機(jī)位置信息和互聯(lián)網(wǎng)上的信息結(jié)合起來(lái),為顧客提供附近的餐飲店信息,接近末班車(chē)時(shí)間時(shí),提供末班車(chē)信息服務(wù)。大數(shù)據(jù)應(yīng)用案例之:零售業(yè)"我們的某個(gè)客戶(hù),是一家領(lǐng)先的專(zhuān)業(yè)時(shí)裝零售商,通過(guò)當(dāng)?shù)氐陌儇浬痰辍⒕W(wǎng)絡(luò)及其郵購(gòu)目錄業(yè)務(wù)為客戶(hù)提供服務(wù)。公司希望向客戶(hù)提供差異化服務(wù),如何定位公司的差異化,他們通過(guò)從Twitter 和Facebook上收集社交信息,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論