版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每題4分,共48分)1.已知⊙O的半徑為3cm,P到圓心O的距離為4cm,則點P在⊙O()A.內(nèi)部 B.外部 C.圓上 D.不能確定2.樣本中共有5個個體,其值分別為a,0,1,2,3.若該樣本的平均值為1,則樣本方差為()A.65 B.65 C.2 D.3.下列圖形中為中心對稱圖形的是()A.等邊三角形 B.平行四邊形 C.拋物線 D.五角星4.如圖,矩形的面積為4,反比例函數(shù)()的圖象的一支經(jīng)過矩形對角線的交點,則該反比例函數(shù)的解析式是()A. B. C. D.5.如圖,矩形的邊在軸的正半軸上,點的坐標為,反比例函數(shù)的圖象經(jīng)過矩形對角線的交點,則的值是()A.8 B.4 C.2 D.16.如圖,將△ABC放在每個小正方形的邊長都為1的網(wǎng)格中,點A,B,C均在格點上,則tanA的值是()A. B. C.2 D.7.拋物線y=(x﹣2)2+3的頂點坐標是()A.(2,3) B.(﹣2,3) C.(2,﹣3) D.(﹣2,﹣3)8.如圖,將繞點順時針旋轉(zhuǎn),得到,且點在上,下列說法錯誤的是()A.平分 B. C. D.9.如圖,點,,都在上,,則等于()A. B. C. D.10.將二次函數(shù)的圖象先向左平移1個單位,再向下平移2個單位,所得圖象對應的函數(shù)表達式是()A. B.C. D.11.如圖是一斜坡的橫截面,某人沿斜坡上的點出發(fā),走了13米到達處,此時他在鉛直方向升高了5米.則該斜坡的坡度為()A. B. C. D.12.如圖,AB是⊙O的直徑,AC,BC分別與⊙O交于點D,E,則下列說法一定正確的是()A.連接BD,可知BD是△ABC的中線 B.連接AE,可知AE是△ABC的高線C.連接DE,可知 D.連接DE,可知S△CDE:S△ABC=DE:AB二、填空題(每題4分,共24分)13.若反比例函數(shù)y=﹣6x的圖象經(jīng)過點A(m,3),則m的值是_____14.分解因式:a2b﹣b3=.15.如圖,五邊形是正五邊形,若,則__________.16.如圖,在中,,,,則的長為__________.17.已知四條線段a、2、6、a+1成比例,則a的值為_____.18.點M(3,)與點N()關于原點對稱,則________.三、解答題(共78分)19.(8分)京杭大運河是世界文化遺產(chǎn).綜合實踐活動小組為了測出某段運河的河寬(岸沿是平行的),如圖,在岸邊分別選定了點A、B和點C、D,先用卷尺量得AB=160m,CD=40m,再用測角儀測得∠CAB=30°,∠DBA=60°,求該段運河的河寬(即CH的長).20.(8分)如圖,∠MON=60°,OF平分∠MON,點A在射線OM上,P,Q是射線ON上的兩動點,點P在點Q的左側(cè),且PQ=OA,作線段OQ的垂直平分線,分別交OM,OF,ON于點D,B,C,連接AB,PB.(1)依題意補全圖形;(2)判斷線段AB,PB之間的數(shù)量關系,并證明;(3)連接AP,設,當P和Q兩點都在射線ON上移動時,是否存在最小值?若存在,請直接寫出的最小值;若不存在,請說明理由.21.(8分)學習成為現(xiàn)代城市人的時尚,我市圖書館吸引了大批讀者,有關部門統(tǒng)計了2018年第四季度到市圖書館的讀者的職業(yè)分布情況,統(tǒng)計圖如圖.(1)在統(tǒng)計的這段時間內(nèi),共有萬人到圖書館閱讀.其中商人所占百分比是;(2)將條形統(tǒng)計圖補充完整;(3)若今年2月到圖書館的讀者共28000名,估計其中約有多少名職工.22.(10分)計算(1)tan60°﹣sin245°﹣3tan45°+cos60°(2)+tan30°23.(10分)如圖,拋物線經(jīng)過點A(1,0),B(4,0)與軸交于點C.(1)求拋物線的解析式;(2)如圖①,在拋物線的對稱軸上是否存在點P,使得四邊形PAOC的周長最?。咳舸嬖冢蟪鏊倪呅蜳AOC周長的最小值;若不存在,請說明理由.(3)如圖②,點Q是線段OB上一動點,連接BC,在線段BC上是否存在這樣的點M,使△CQM為等腰三角形且△BQM為直角三角形?若存在,求M的坐標;若不存在,請說明理由.24.(10分)如圖,線段AB,A(2,3),B(5,3),拋物線y=﹣(x﹣1)2﹣m2+2m+1與x軸的兩個交點分別為C,D(點C在點D的左側(cè))(1)求m為何值時拋物線過原點,并求出此時拋物線的解析式及對稱軸和項點坐標.(2)設拋物線的頂點為P,m為何值時△PCD的面積最大,最大面積是多少.(3)將線段AB沿y軸向下平移n個單位,求當m與n有怎樣的關系時,拋物線能把線段AB分成1:2兩部分.25.(12分)某網(wǎng)店打出促銷廣告:最潮新款服裝30件,每件售價300元,若一次性購買不超過10件時,售價不變;若一次性購買超過10件時,每多買2件,所買的每件服裝的售價均降低6元.已知該服裝成本是每件200元.設顧客一次性購買服裝x件時,該網(wǎng)店從中獲利y元.(1)求y與x的函數(shù)關系式,并寫出自變量x的取值范圍.(2)顧客一次性購買多少件時,該網(wǎng)店從中獲利最多,并求出獲利的最大值?26.已知在△ABC中,AB=BC,以AB為直徑的⊙O分別交AC于D,BC于E,連接ED.(1)求證:ED=DC;(2)若CD=6,EC=4,求AB的長.
參考答案一、選擇題(每題4分,共48分)1、B【解析】平面內(nèi),設⊙O的半徑為r,點P到圓心的距離為d,則有d>r點P在⊙O外;d=r點P在⊙O上;d<r點P在⊙O內(nèi).【詳解】∵⊙O的半徑為3cm,點P到圓心O的距離為4cm,4cm>3cm,∴點P在圓外.故選:B.【點睛】本題考查平面上的點距離圓心的位置關系的問題.2、C【分析】由樣本平均值的計算公式列出關于a的方程,解出a,再利用樣本方差的計算公式求解即可.【詳解】由題意知(a+0+1+2+3)÷5=1,解得a=-1,∴樣本方差為故選:C.【點睛】本題考查樣本的平均數(shù)、方差求法,屬基礎題,熟記樣本的平均數(shù)、方差公式是解答本題的關鍵3、B【分析】根據(jù)中心對稱圖形的概念求解.【詳解】A、等邊三角形不是中心對稱圖形,故本選項錯誤;B、平行四邊形是中心對稱圖形,故本選項正確;C、拋物線不是中心對稱圖形,故本選項錯誤;D、五角星不是中心對稱圖形,故本選項錯誤.故選:B.【點睛】本題考查了中心對稱圖形的概念,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.4、D【分析】過P點作PE⊥x軸于E,PF⊥y軸于F,根據(jù)矩形的性質(zhì)得S矩形OEPF=S矩形OACB=1,然后根據(jù)反比例函數(shù)的比例系數(shù)k的幾何意義求解.【詳解】過P點作PE⊥x軸于E,PF⊥y軸于F,如圖所示:
∵四邊形OACB為矩形,點P為對角線的交點,
∴S矩形OEPF=S矩形OACB=×4=1.
∴k=-1,
所以反比例函數(shù)的解析式是:.故選:D【點睛】考查了反比例函數(shù)的比例系數(shù)k的幾何意義:在反比例函數(shù)y=圖象中任取一點,過這一個點向x軸和y軸分別作垂線,與坐標軸圍成的矩形的面積是定值|k|.5、C【分析】根據(jù)矩形的性質(zhì)求出點P的坐標,將點P的坐標代入中,求出的值即可.【詳解】∵點P是矩形的對角線的交點,點的坐標為∴點P將點P代入中解得故答案為:C.【點睛】本題考查了矩形的性質(zhì)以及反比例函數(shù)的性質(zhì),掌握代入求值法求出的值是解題的關鍵.6、D【解析】首先構(gòu)造以A為銳角的直角三角形,然后利用正切的定義即可求解.【詳解】連接BD,則BD=,AD=2,則tanA===.故選D.【點睛】本題考查銳角三角函數(shù)的定義及運用:在直角三角形中,銳角的正弦為對邊比斜邊,余弦為鄰邊比斜邊,正切為對邊比鄰邊,構(gòu)造直角三角形是本題的關鍵.7、A【分析】根據(jù)拋物線的頂點式可直接得到頂點坐標.【詳解】解:y=(x﹣2)2+3是拋物線的頂點式方程,根據(jù)頂點式的坐標特點可知,頂點坐標為(2,3).故選:A.【點睛】本題考查了二次函數(shù)的頂點式與頂點坐標,頂點式y(tǒng)=(x-h)2+k,頂點坐標為(h,k),對稱軸為直線x=h,難度不大.8、C【分析】由題意根據(jù)旋轉(zhuǎn)變換的性質(zhì),進行依次分析即可判斷.【詳解】解:解:∵△ABC繞點A順時針旋轉(zhuǎn),旋轉(zhuǎn)角是∠BAC,∴AB的對應邊為AD,BC的對應邊為DE,∠BAC對應角為∠DAE,∴AB=AD,DE=BC,∠BAC=∠DAE即平分,∴A,B,D選項正確,C選項不正確.故選:C.【點睛】本題考查旋轉(zhuǎn)的性質(zhì),旋轉(zhuǎn)前后的兩個圖形全等,對應點與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角,對應點到旋轉(zhuǎn)中心的距離相等.9、C【分析】連接OC,根據(jù)等邊對等角即可得到∠B=∠BCO,∠A=∠ACO,從而求得∠ACB的度數(shù),然后根據(jù)圓周角定理即可求解.【詳解】連接OC.∵OB=OC,∴∠B=∠BCO,同理,∠A=∠ACO,∴∠ACB=∠A+∠B=40°,∴∠AOB=2∠ACB=80°.故選:C.【點睛】本題考查了圓周角定理,正確作出輔助線,求得∠ACB的度數(shù)是關鍵.10、B【解析】拋物線平移不改變a的值,由拋物線的頂點坐標即可得出結(jié)果.【詳解】解:原拋物線的頂點為(0,0),向左平移1個單位,再向下平移1個單位,那么新拋物線的頂點為(-1,-1),
可設新拋物線的解析式為:y=(x-h)1+k,
代入得:y=(x+1)1-1.
∴所得圖象的解析式為:y=(x+1)1-1;
故選:B.【點睛】本題考查二次函數(shù)圖象的平移規(guī)律;解決本題的關鍵是得到新拋物線的頂點坐標.11、A【分析】如圖,過點M做水平線,過點N做直線垂直于水平線垂足為點A,則△MAN為直角三角形,先根據(jù)勾股定理,求出水平距離,然后根據(jù)坡度定義解答即可.【詳解】解:如圖,過點M做水平線,過點N做垂直于水平線交于點A.在Rt△MNA中,,∴坡度5:12=1:2.1.故選:A【點睛】本題考查的知識點為:坡度=垂直距離:水平距離,通常寫成1:n的形式,屬于基礎題.12、B【分析】根據(jù)圓周角定理,相似三角形的判定和性質(zhì)一一判斷即可.【詳解】解:A、連接BD.∵AB是直徑,∴∠ADB=90°,∴BD是△ABC的高,故本選項不符合題意.B、連接AE.∵AB是直徑,∴∠AEB=90°,∴BE是△ABC的高,故本選項符合題意.C、連接DE.可證△CDE∽△CBA,可得,故本選項不符合題意.D、∵△CDE∽△CBA,可得S△CDE:S△ABC=DE2:AB2,故本選項不符合題意,故選:B.【點睛】本題考查了圓周角定理、相似三角形的判定以及性質(zhì),輔助線的作圖是解本題的關鍵二、填空題(每題4分,共24分)13、﹣2【解析】∵反比例函數(shù)y=-6x∴3=-6m,解得14、b(a+b)(a﹣b)【分析】先提取公因式,再利用平方差公式進行二次因式分解.平方差公式:a2﹣b2=(a+b)(a﹣b).【詳解】解:a2b﹣b3,=b(a2﹣b2)=b(a+b)(a﹣b).故答案為b(a+b)(a﹣b).15、72【解析】分析:延長AB交于點F,根據(jù)得到∠2=∠3,根據(jù)五邊形是正五邊形得到∠FBC=72°,最后根據(jù)三角形的外角等于與它不相鄰的兩個內(nèi)角的和即可求出.詳解:延長AB交于點F,∵,∴∠2=∠3,∵五邊形是正五邊形,∴∠ABC=108°,∴∠FBC=72°,∠1-∠2=∠1-∠3=∠FBC=72°故答案為:72°.點睛:此題主要考查了平行線的性質(zhì)和正五邊形的性質(zhì),正確把握五邊形的性質(zhì)是解題關鍵.16、6【分析】根據(jù)相似三角形的性質(zhì)即可得出答案.【詳解】∵DE∥BC∴∠ADE=∠ABC,∠AED=∠ACB∴△ADE∽△ABC∴∵∴又∴BC=6故答案為6.【點睛】本題考查的是相似三角形,比較簡單,容易把三角形的相似比看成,這一點尤其需要注意.17、3【分析】由四條線段a、2、6、a+1成比例,根據(jù)成比例線段的定義,即可得=,即可求得a的值.【詳解】解:∵四條線段a、2、6、a+1成比例,∴=,∵a(a+1)=12,解得:a1=3,a2=-4(不符合題意,舍去).故答案為3.【點睛】本題考查了線段成比例的定義:若四條線段a,b,c,d成比例,則有a:b=c:d.18、-6【分析】根據(jù)平面內(nèi)兩點關于關于原點對稱的點,橫坐標與縱坐標都互為相反數(shù),列方程求解即可.【詳解】解:根據(jù)平面內(nèi)兩點關于關于原點對稱的點,橫坐標與縱坐標都互為相反數(shù),∴b+3=0,a-1+4=0,即:a=﹣3且b=﹣3,∴a+b=﹣6【點睛】本題考查關于原點對稱的點的坐標,掌握坐標變化規(guī)律是本題的解題關鍵.三、解答題(共78分)19、該段運河的河寬為.【分析】過D作DE⊥AB,可得四邊形CHED為矩形,由矩形的對邊相等得到兩對對邊相等,分別在直角三角形ACH與直角三角形BDE中,設CH=DE=xm,利用銳角三角函數(shù)定義表示出AH與BE,由AH+HE+EB=AB列出方程,求出方程的解即可得到結(jié)果.【詳解】解:過作,可得四邊形為矩形,,設,在中,,,在中,,,由,得到,解得:,即,則該段運河的河寬為.【點睛】考查了解直角三角形的應用,熟練掌握銳角三角函數(shù)定義是解本題的關鍵.20、(1)補全圖形見解析;(2)AB=PB.證明見解析;(3)存在,.【分析】(1)根據(jù)題意補全圖形如圖1,
(2)結(jié)論:AB=PB.連接BQ,只要證明△AOB≌△PQB即可解決問題;
(3)連接BQ.只要證明△ABP∽△OBQ,即可推出,由∠AOB=30°,推出當BA⊥OM時,的值最小,最小值為,由此即可解決問題.【詳解】解:(1)如圖1,
(2)AB=PB.證明:如圖,連接BQ.∵BC的垂直平分OQ,∴OB=BQ,∴∠BOP=∠BQP.又∵OF平分∠MON,∴∠AOB=∠BOP.∴∠AOB=∠BQP.又∵PQ=OA,∴△AOB≌△PQB,∴AB=PB.(3))∵△AOB≌△PQB,
∴∠OAB=∠BPQ,
∵∠OPB+∠BPQ=180°,
∴∠OAB+∠OPB=180°,∠AOP+∠ABP=180°,
∵∠MON=60°,
∴∠ABP=120°,
∵BA=BP,
∴∠BAP=∠BPA=30°,
∵BO=BQ,
∴∠BOQ=∠BQO=30°,
∴△ABP∽△OBQ,
∴,
∵∠AOB=30°,
∴當BA⊥OM時,的值最小,最小值為,
∴k=.【點睛】本題是三角形綜合題,考查了全等三角形的判定和性質(zhì),角平分線的性質(zhì),等腰三角形的性質(zhì),直角三角形的性質(zhì),相似三角形的判定和性質(zhì)等知識,解題的關鍵是正確尋找全等三角形解決問題.21、(1)16,;(2)見解析;(3)10500(人).【分析】(1)利用學生數(shù)除以其所占的百分比即可得到總?cè)藬?shù),然后用商人數(shù)除以總?cè)藬?shù)即可得到商人所占的百分比;(2)根據(jù)各職業(yè)人數(shù)之和等于總?cè)藬?shù)可得職工的人數(shù),據(jù)此可補全圖形;(3)利用總?cè)藬?shù)乘以樣本中職工所占百分比即可得到職工人數(shù).【詳解】解:(1)這段時間,到圖書館閱讀的總?cè)藬?shù)為(萬人),其中商人所占百分比為,故答案為,.(2)職工的人數(shù)為(萬人).補全條形統(tǒng)計圖如圖所示.(3)估計其中職工人數(shù)約為(人).【點睛】本題主要考查了條形統(tǒng)計圖,扇形統(tǒng)計圖及用樣本估計總體的知識,能夠從兩種統(tǒng)計圖中整理出解題的有關信息是解題關鍵.22、(1)0;(2)【分析】(1)將特殊角的三角函數(shù)值代入求解;(2)將特殊角的三角函數(shù)值代入求解.【詳解】(1)原式=×﹣()2﹣3×1+=3﹣﹣3+=0;(2)原式====.【點睛】本題考查了特殊角的三角函數(shù)值,解答本題的關鍵是掌握幾個特殊角的三角函數(shù)值.23、(1);(2)9;(3)存在點M的坐標為()或()使△CQM為等腰三角形且△BQM為直角三角形【分析】(1)根據(jù)拋物線經(jīng)過A、B兩點,帶入解析式,即可求得a、b的值.(2)根據(jù)PA=PB,要求四邊形PAOC的周長最小,只要P、B、C三點在同一直線上,因此很容易計算出最小周長.(3)首先根據(jù)△BQM為直角三角形,便可分為兩種情況QM⊥BC和QM⊥BO,再結(jié)合△QBM∽△CBO,根據(jù)相似比例便可求解.【詳解】解:(1)將點A(1,0),B(4,0)代入拋物線中,得:解得:所以拋物線的解析式為.(2)由(1)可知,拋物線的對稱軸為直線.連接BC,交拋物線的對稱軸為點P,此時四邊形PAOC的周長最小,最小值為OA+OC+BC=1+3+5=9.(3)當QM⊥BC時,易證△QBM∽△CBO所以,又因為△CQM為等腰三角形,所以QM=CM.設CM=x,則BM=5-x所以所以.所以QM=CM=,BM=5-x=,所以BM:CM=4:3.過點M作NM⊥OB于N,則MN//OC,所以,即,所以,所以點M的坐標為()當QM⊥BO時,則MQ//OC,所以,即設QM=3t,則BQ=4t,又因為△CQM為等腰三角形,所以QM=CM=3t,BM=5-3t又因為QM2+QB2=BM2,所以(3t)2+(4t)2=(5-3t)2,解得MQ=3t=,,所以點M的坐標為().綜上所述,存在點M的坐標為()或()使△CQM為等腰三角形且△BQM為直角三角形【點睛】本題是一道二次函數(shù)的綜合型題目,難度系數(shù)較高,關鍵在于根據(jù)圖形化簡問題,這道題涉及到一種分類討論的思想,這是這道題的難點所在,分類討論思想的關鍵在于根據(jù)直角三角形的直角進行分類的.24、(1)當m=0或m=2時,拋物線過原點,此時拋物線的解析式是y=﹣(x﹣1)2+1,對稱軸為直線x=1,頂點為(1,1);(2)m為1時△PCD的面積最大,最大面積是2;(3)n=m2﹣2m+6或n=m2﹣2m+1.【分析】(1)根據(jù)拋物線過原點和題目中的函數(shù)解析式可以求得m的值,并求出此時拋物線的解析式及對稱軸和項點坐標;(2)根據(jù)題目中的函數(shù)解析式和二次函數(shù)的性質(zhì),可以求得m為何值時△PCD的面積最大,求得點C、D的坐標,由此求出△PCD的面積最大值;(3)根據(jù)題意拋物線能把線段AB分成1:2,存在兩種情況,求出兩種情況下線段AB與拋物線的交點,即可得到當m與n有怎樣的關系時,拋物線能把線段AB分成1:2兩部分.【詳解】(1)當y=﹣(x﹣1)2﹣m2+2m+1過原點(0,0)時,0=﹣1﹣m2+2m+1,得m1=0,m2=2,當m1=0時,y=﹣(x﹣1)2+1,當m2=2時,y=﹣(x﹣1)2+1,由上可得,當m=0或m=2時,拋物線過原點,此時拋物線的解析式是y=﹣(x﹣1)2+1,對稱軸為直線x=1,頂點為(1,1);(2)∵拋物線y=﹣(x﹣1)2﹣m2+2m+1,∴該拋物線的頂點P為(1,﹣m2+2m+1),當﹣m2+2m+1最大時,△PCD的面積最大,∵﹣m2+2m+1=﹣(m﹣1)2+2,∴當m=1時,﹣m2+2m+1最大為2,∴y=﹣(x﹣1)2+2,當y=0時,0=﹣(x﹣1)2+2,得x1=1+,x2=1﹣,∴點C的坐標為(1﹣,0),點D的坐標為(1+,0)∴CD=(1+)﹣(1﹣)=2,∴S△PCD==2,即m為1時△PCD的面積最大,最大面積是2;(3)將線段AB沿y軸向下平移n個單位A(2,3﹣n),B(5,3﹣n)當線段AB分成1:2兩部分,則點(3,3﹣n)或(4,3﹣n)在該拋物線解析式上,把(3,3﹣n)代入拋物線解析式得,3﹣n=﹣(3﹣1)2﹣m2+3m+1,得n=m2﹣2m+6;把(4,3﹣n)代入拋物線解析式,得3﹣n=﹣(3﹣1)2﹣m2+3m+1,得n=m2﹣2m+1;∴
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年環(huán)保產(chǎn)業(yè)園區(qū)場地租賃及環(huán)境治理合同范本3篇
- 2024年鋰電供貨專屬合同模板
- 專業(yè)化汽車零部件交易合作合同版B版
- 2024煤礦轉(zhuǎn)讓合同范本
- 2024年車位買賣協(xié)議模板版B版
- LED照明安裝及維護服務協(xié)議版B版
- 三方合作擔保合同示范文本(2024版)版
- 電工知識培訓班課件
- 2024智能充電系統(tǒng)設備研發(fā)、生產(chǎn)、銷售、品牌建設一體化合同3篇
- 2024股權轉(zhuǎn)讓合作協(xié)議書
- 腹膜透析并發(fā)腹膜炎臨床路徑
- (完整版)市政工程施工工期定額(定稿).docx
- 商業(yè)發(fā)票INVOICE模板
- 2006年工資標準及套改對應表(共7頁)
- 超聲波焊接作業(yè)指導書(共8頁)
- 《你的生命有什么可能》PPT
- 雙梁橋式起重機設計
- 電機與電氣控制技術PPT課件
- 廢棄鉆井泥漿和壓裂返排液無害化處理研究報告
- 論文-基于單片機的搶答器.doc
- 食品安全監(jiān)督抽檢異議處理申請書格式
評論
0/150
提交評論