2022-2023學(xué)年四川省成都市泡桐樹中學(xué)數(shù)學(xué)九年級第一學(xué)期期末綜合測試模擬試題含解析_第1頁
2022-2023學(xué)年四川省成都市泡桐樹中學(xué)數(shù)學(xué)九年級第一學(xué)期期末綜合測試模擬試題含解析_第2頁
2022-2023學(xué)年四川省成都市泡桐樹中學(xué)數(shù)學(xué)九年級第一學(xué)期期末綜合測試模擬試題含解析_第3頁
2022-2023學(xué)年四川省成都市泡桐樹中學(xué)數(shù)學(xué)九年級第一學(xué)期期末綜合測試模擬試題含解析_第4頁
2022-2023學(xué)年四川省成都市泡桐樹中學(xué)數(shù)學(xué)九年級第一學(xué)期期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.《孫子算經(jīng)》中有一道題:“今有木,不知長短,引繩度之,余繩四尺五寸;屈繩量之,不足一尺,木長幾何?”譯文大致是:“用一根繩子去量一根木條,繩子剩余4.5尺;將繩子對折再量木條,木條剩余1尺,問木條長多少尺?”如果設(shè)木條長尺,繩子長尺,根據(jù)題意列方程組正確的是()A. B. C. D.2.下列判斷正確的是()A.任意擲一枚質(zhì)地均勻的硬幣10次,一定有5次正面向上B.天氣預(yù)報說“明天的降水概率為40%”,表示明天有40%的時間都在降雨C.“籃球隊員在罰球線上投籃一次,投中”為隨機事件D.“a是實數(shù),|a|≥0”是不可能事件3.若拋物線y=ax2+2ax+4(a<0)上有A(-,y1),B(-

,y2),C(

,y3)三點,則y1,y2,y3的大小關(guān)系為()A.y1<y2<y3 B.y3<y2<y1 C.y3<y1<y2 D.y2<y3<y14.如圖,四邊形ABCD內(nèi)接于⊙O,AD∥BC,BD平分∠ABC,∠A=130°,則∠BDC的度數(shù)為()A.100° B.105° C.110° D.115°5.如圖,螺母的一個面的外沿可以看作是正六邊形,這個正六邊形ABCDEF的半徑是2cm,則這個正六邊形的周長是()A.12 B.6 C.36 D.126.如圖,在平面直角坐標(biāo)系中,點P在函數(shù)y=(x>0)的圖象上從左向右運動,PA∥y軸,交函數(shù)y=﹣(x>0)的圖象于點A,AB∥x軸交PO的延長線于點B,則△PAB的面積()A.逐漸變大 B.逐漸變小 C.等于定值16 D.等于定值247.把拋物線向右平移一個單位,再向上平移3個單位,得到拋物線的解析式為()A. B.C. D.8.按下面的程序計算:若開始輸入的值為正整數(shù),最后輸出的結(jié)果為,則開始輸入的值可以為()A. B. C. D.9.如圖,熱氣球的探測器顯示,從熱氣球A看一棟高樓頂部B的仰角為300,看這棟高樓底部C的俯角為600,熱氣球A與高樓的水平距離為120m,這棟高樓BC的高度為()A.40m B.80m C.120m D.160m10.如圖,A、B、C、D是⊙O上的四點,BD為⊙O的直徑,若四邊形ABCO是平行四邊形,則∠ADB的大小為()A.30° B.45° C.60° D.75°二、填空題(每小題3分,共24分)11.已知關(guān)于x的一元二次方程x2+mx+n=0的兩個實數(shù)根分別為x1=﹣2,x2=4,則m+n=_____.12.一個多邊形的內(nèi)角和為900°,這個多邊形的邊數(shù)是____.13.已知反比例函數(shù),當(dāng)時,隨的增大而增大,則的取值范圍為_______.14.對于實數(shù)a,b,定義運算“?”:,例如:5?3,因為5>3,所以5?3=5×3﹣32=1.若x1,x2是一元二次方程x2﹣1x+8=0的兩個根,則x1?x2=________.15.在平面直角坐標(biāo)系中,點為原點,拋物線與軸交于點,以為一邊向左作正方形,點為拋物線的頂點,當(dāng)是銳角三角形時,的取值范圍是__________.16.如圖,直角三角形ABC中,∠ACB=90°,AB=10,BC=6,在線段AB上取一點D,作DF⊥AB交AC于點F.現(xiàn)將△ADF沿DF折疊,使點A落在線段DB上,對應(yīng)點記為A1;AD的中點E的對應(yīng)點記為E1.若△E1FA1∽△E1BF,則AD=.17.點P(3,﹣4)關(guān)于原點對稱的點的坐標(biāo)是_____.18.如圖,正方形OABC的兩邊OA、OC分別在x軸、y軸上,點D(5,3)在邊AB上,以C為中心,把△CDB旋轉(zhuǎn)90°,則旋轉(zhuǎn)后點D的對應(yīng)點D′的坐標(biāo)是___________.三、解答題(共66分)19.(10分)如圖,是的角平分線,過點分別作、的平行線,交于點,交于點.(1)求證:四邊形是菱形.(2)若,.求四邊形的面積.20.(6分)如圖,陽光下,小亮的身高如圖中線段所示,他在地面上的影子如圖中線段所示,線段表示旗桿的高,線段表示一堵高墻.請你在圖中畫出旗桿在同一時刻陽光照射下形成的影子;如果小亮的身高,他的影子,旗桿的高,旗桿與高墻的距離,請求出旗桿的影子落在墻上的長度.21.(6分)如圖,在平面直角坐標(biāo)系中,⊙C與y軸相切,且C點坐標(biāo)為(1,0),直線過點A(—1,0),與⊙C相切于點D,求直線的解析式.22.(8分)如圖1,已知拋物線y=﹣x2+bx+c交y軸于點A(0,4),交x軸于點B(4,0),點P是拋物線上一動點,試過點P作x軸的垂線1,再過點A作1的垂線,垂足為Q,連接AP.(1)求拋物線的函數(shù)表達式和點C的坐標(biāo);(2)若△AQP∽△AOC,求點P的橫坐標(biāo);(3)如圖2,當(dāng)點P位于拋物線的對稱軸的右側(cè)時,若將△APQ沿AP對折,點Q的對應(yīng)點為點Q′,請直接寫出當(dāng)點Q′落在坐標(biāo)軸上時點P的坐標(biāo).23.(8分)為了響應(yīng)國家“大眾創(chuàng)業(yè)、萬眾創(chuàng)新”的雙創(chuàng)政策,大學(xué)生小王與同學(xué)合伙向市政府申請了10萬元的無息創(chuàng)業(yè)貸款,他們用這筆貸款,注冊了一家網(wǎng)店,招收了6名員工,銷售一種火爆的電子產(chǎn)品,并約定用該網(wǎng)店經(jīng)營的利潤,逐月償還這筆無息貸款.已知該產(chǎn)品的成本為每件4元,員工每人每月的工資為3500元,該網(wǎng)店每月還需支付其它費用0.9萬元.開工后的第一個月,小王他們將該電子產(chǎn)品的銷售單價定為6元,結(jié)果當(dāng)月銷售了1.8萬件.(1)小王他們第一個月可以償還多少萬元的無息貸款?(2)從第二個月開始,他們打算上調(diào)該電子產(chǎn)品的銷售單價,經(jīng)過市場調(diào)研他們得出:如果單價每上漲1元,月銷售量將在現(xiàn)有基礎(chǔ)上減少1000件,且物價局規(guī)定該電子產(chǎn)品的銷售單價不得超過成本價的250%.小王他們計劃在第二個月償還3.4萬元的無息貸款,他們應(yīng)該將該電子產(chǎn)品的銷售單價定為多少元?24.(8分)如圖,已知在矩形ABCD中,AB=6,BC=8,點P從點C出發(fā)以每秒1個單位長度的速度沿著CD在C點到D點間運動(當(dāng)達D點后則停止運動),同時點Q從點D出發(fā)以每秒2個單位長度的速度沿著DA在D點到A點間運動(當(dāng)達到A點后則停止運動).設(shè)運動時間為t秒,則按下列要求解決有關(guān)的時間t.(1)△PQD的面積為5時,求出相應(yīng)的時間t;(2)△PQD與△ABC可否相似,如能相似求出相應(yīng)的時間t,如不能說明理由;(3)△PQD的面積可否為10,說明理由.25.(10分)如圖,已知點,是一次函數(shù)圖象與反比例函數(shù)圖象的交點,且一次函數(shù)與軸交于點.(1)求該反比例函數(shù)和一次函數(shù)的解析式;(2)連接,求的面積;(3)在軸上有一點,使得,求出點的坐標(biāo).26.(10分)已知:如圖,C,D是以AB為直徑的⊙O上的兩點,且OD∥BC.求證:AD=DC.

參考答案一、選擇題(每小題3分,共30分)1、A【解析】本題的等量關(guān)系是:木長繩長,繩長木長,據(jù)此可列方程組即可.【詳解】設(shè)木條長為尺,繩子長為尺,根據(jù)題意可得:.故選:.【點睛】本題考查由實際問題抽象出二元一次方程組,解題的關(guān)鍵是明確題意,列出相應(yīng)的二元一次方程組.2、C【分析】直接利用概率的意義以及隨機事件的定義分別分析得出答案.【詳解】A、任意擲一枚質(zhì)地均勻的硬幣10次,一定有5次正面向上,錯誤;B、天氣預(yù)報說“明天的降水概率為40%”,表示明天有40%的時間都在降雨,錯誤;C、“籃球隊員在罰球線上投籃一次,投中”為隨機事件,正確;D、“a是實數(shù),|a|≥0”是必然事件,故此選項錯誤.故選C.【點睛】此題主要考查了概率的意義以及隨機事件的定義,正確把握相關(guān)定義是解題關(guān)鍵.3、C【分析】根據(jù)拋物線y=ax2+2ax+4(a<0)可知該拋物線開口向下,可以求得拋物線的對稱軸,又因為拋物線具有對稱性,從而可以解答本題.【詳解】解:∵拋物線y=ax2+2ax+4(a<0),∴對稱軸為:x=,∴當(dāng)x<?1時,y隨x的增大而增大,當(dāng)x>?1時,y隨x的增大而減小,∵A(?,y1),B(?,y2),C(,y3)在拋物線上,且?<?,?0.5<,∴y3<y1<y2,故選:C.【點睛】本題考查二次函數(shù)的性質(zhì),解題的關(guān)鍵是明確二次函數(shù)具有對稱性,在對稱軸的兩側(cè)它的增減性不一樣.4、B【解析】根據(jù)圓內(nèi)接四邊形的性質(zhì)得出∠C的度數(shù),進而利用平行線的性質(zhì)得出∠ABC的度數(shù),利用角平分線的定義和三角形內(nèi)角和解答即可.【詳解】∵四邊形ABCD內(nèi)接于⊙O,∠A=130°,

∴∠C=180°-130°=50°,

∵AD∥BC,

∴∠ABC=180°-∠A=50°,

∵BD平分∠ABC,

∴∠DBC=25°,

∴∠BDC=180°-25°-50°=105°,

故選:B.【點睛】本題考查了圓內(nèi)接四邊形的性質(zhì),關(guān)鍵是根據(jù)圓內(nèi)接四邊形的性質(zhì)得出∠C的度數(shù).5、D【分析】由正六邊形的性質(zhì)證出△AOB是等邊三角形,由等邊三角形的性質(zhì)得出AB=OA,即可得出答案【詳解】設(shè)正六邊形的中心為O,連接AO,BO,如圖所示:∵O是正六邊形ABCDEF的中心,∴AB=BC=CD=DE=EF=FA,∠AOB=60°,AO=BO=2cm,∴△AOB是等邊三角形,∴AB=OA=2cm,∴正六邊形ABCDEF的周長=6AB=12cm.故選D【點睛】此題主要考查了正多邊形和圓、等邊三角形的判定與性質(zhì);根據(jù)題意得出△AOB是等邊三角形是解題關(guān)鍵.6、C【分析】根據(jù)反比例函數(shù)k的幾何意義得出S△POC=×2=1,S矩形ACOD=6,即可得出,從而得出,通過證得△POC∽△PBA,得出,即可得出S△PAB=1S△POC=1.【詳解】如圖,由題意可知S△POC=×2=1,S矩形ACOD=6,∵S△POC=OC?PC,S矩形ACOD=OC?AC,∴,∴,∴,∵AB∥軸,∴△POC∽△PBA,∴,∴S△PAB=1S△POC=1,∴△PAB的面積等于定值1.故選:C.【點睛】本題考查了反比例函數(shù)的性質(zhì)以及矩形的面積的計算,利用相似三角形面積比等于相似比的平方是解決本題的關(guān)鍵.7、A【解析】試題解析:拋物線的頂點坐標(biāo)為(0,0),把點(0,0)先向右平移1個單位,再向上平移1個單位后得到的點的坐標(biāo)為(1,1),所以所得的拋物線的解析式為y=(x-1)2+1.故選B.考點:二次函數(shù)圖象與幾何變換8、B【分析】由3x+1=22,解得x=7,即開始輸入的x為111,最后輸出的結(jié)果為556;當(dāng)開始輸入的x值滿足3x+1=7,最后輸出的結(jié)果也為22,可解得x=2即可完成解答.【詳解】解:當(dāng)輸入一個正整數(shù),一次輸出22時,3x+1=22,解得:x=7;當(dāng)輸入一個正整數(shù)7,當(dāng)兩次后輸出22時,3x+1=7,解得:x=2;故答案為B.【點睛】本題考查了一元一次方程的應(yīng)用,根據(jù)程序框圖列出方程和理解循環(huán)結(jié)構(gòu)是解答本題的關(guān)鍵.9、D【分析】過A作AD⊥BC,垂足為D,在直角△ABD與直角△ACD中,根據(jù)三角函數(shù)的定義求得BD和CD,再根據(jù)BC=BD+CD即可求解.【詳解】解:過A作AD⊥BC,垂足為D.在Rt△ABD中,∵∠BAD=30°,AD=120m,∴BD=AD?tan30°=120×m,在Rt△ACD中,∵∠CAD=60°,AD=120m,∴CD=AD?tan60°=120×=120m,∴BC=BD+CD=m.故選D.【點睛】本題考查解直角三角形的應(yīng)用-仰角俯角問題.10、A【解析】解:∵四邊形ABCO是平行四邊形,且OA=OC,∴四邊形ABCO是菱形,∴AB=OA=OB,∴△OAB是等邊三角形,∴∠AOB=60°,∵BD是⊙O的直徑,∴點B、D、O在同一直線上,∴∠ADB=∠AOB=30°故選A.二、填空題(每小題3分,共24分)11、-1【分析】根據(jù)根與系數(shù)的關(guān)系得出-2+4=-m,-2×4=n,再求出m+n的值即可.【詳解】解:∵關(guān)于x的一元二次方程x2+mx+n=0的兩個實數(shù)根分別為x1=-2,x2=4,

∴-2+4=-m,-2×4=n,

解得:m=-2,n=-8,

∴m+n=-1,

故答案為:-1.【點睛】本題考查了根與系數(shù)的關(guān)系的應(yīng)用,能根據(jù)根與系數(shù)的關(guān)系得出-2+4=-m,-2×4=n是解此題的關(guān)鍵.12、1

【分析】根據(jù)多邊形內(nèi)角和定理:(n﹣2)×180°,列方程解答出即可.【詳解】設(shè)這個多邊形的邊數(shù)為n,根據(jù)多邊形內(nèi)角和定理得:(n﹣2)×180°=900°,解得n=1.故答案為:1【點睛】本題主要考查了多邊形內(nèi)角和定理的應(yīng)用,熟記多邊形內(nèi)角和公式并準(zhǔn)確計算是解題的關(guān)鍵.13、m>1【分析】根據(jù)反比例函數(shù),如果當(dāng)x>0時,y隨自變量x的增大而增大,可以得到1-m<0,從而可以解答本題.【詳解】解:∵反比例函數(shù),當(dāng)x>0時,y隨x的增大而增大,∴1-m<0,

解得,m>1,

故答案為:m>1.【點睛】本題考查反比例函數(shù)的性質(zhì),解答本題的關(guān)鍵是明確題意,利用反比例函數(shù)的性質(zhì)解答.14、±4【解析】先解得方程x2﹣1x+8=0的兩個根,然后分情況進行新定義運算即可.【詳解】∵x2﹣1x+8=0,∴(x-2)(x-4)=0,解得:x=2,或x=4,當(dāng)x1>x2時,則x1?x2=4×2﹣22=4;當(dāng)x1<x2時,則x1?x2=22﹣2×4=﹣4.故答案為:±4.【點睛】本題主要考查解一元二次方程,解此題的關(guān)鍵在于利用因式分解法求得方程的解.15、或【分析】首先由拋物線解析式求出頂點A的坐標(biāo),然后再由對稱軸可判定△AHP為等腰直角三角形,故當(dāng)是銳角三角形時,,即可得出的取值范圍.【詳解】∵∴頂點A的坐標(biāo)為令PB與對稱軸相交于點H,如圖所示∴PH=AH,即△AHP為等腰直角三角形∴當(dāng)是銳角三角形時,,∴BP=OP,P(0,c)∴或故答案為或.【點睛】此題主要考查二次函數(shù)圖象與幾何圖形的綜合運用,解題關(guān)鍵是找出臨界點直角三角形,即可得出取值范圍.16、3.2.【詳解】解:∵∠ACB=90°,AB=20,BC=6,∴.設(shè)AD=2x,∵點E為AD的中點,將△ADF沿DF折疊,點A對應(yīng)點記為A2,點E的對應(yīng)點為E2,∴AE=DE=DE2=A2E2=x.∵DF⊥AB,∠ACB=90°,∠A=∠A,∴△ABC∽△AFD.∴AD:AC=DF:BC,即2x:8=DF:6,解得DF=2.5x.在Rt△DE2F中,E2F2=DF2+DE22=3.25x2,又∵BE2=AB-AE2=20-3x,△E2FA2∽△E2BF,∴E2F:A2E2=BE2:E2F,即E2F2=A2E2?BE2.∴,解得x=2.6或x=0(舍去).∴AD的長為2×2.6=3.2.17、(﹣3,4).【分析】根據(jù)關(guān)于關(guān)于原點對稱的點,橫坐標(biāo)與縱坐標(biāo)都互為相反數(shù).填空即可.【詳解】解:點P(3,﹣4)關(guān)于原點對稱的點的坐標(biāo)是(﹣3,4),故答案為(﹣3,4).【點睛】解決本題的關(guān)鍵是掌握好對稱點的坐標(biāo)規(guī)律:(1)關(guān)于x軸對稱的點,橫坐標(biāo)相同,縱坐標(biāo)互為相反數(shù);(2)關(guān)于y軸對稱的點,縱坐標(biāo)相同,橫坐標(biāo)互為相反數(shù);(3)關(guān)于原點對稱的點,橫坐標(biāo)與縱坐標(biāo)都互為相反數(shù).18、(2,10)或(﹣2,0)【解析】∵點D(5,3)在邊AB上,∴BC=5,BD=5﹣3=2,①若順時針旋轉(zhuǎn),則點D′在x軸上,OD′=2,所以,D′(﹣2,0),②若逆時針旋轉(zhuǎn),則點D′到x軸的距離為10,到y(tǒng)軸的距離為2,所以,D′(2,10),綜上所述,點D′的坐標(biāo)為(2,10)或(﹣2,0).三、解答題(共66分)19、(1)詳見解析;(2)120.【分析】(1)先利用兩組對邊分別平行證明四邊形是平行四邊形,然后利用角平分線和平行線的性質(zhì)證明一組鄰邊相等,即可證明四邊形是菱形.(2)連接交于點,利用菱形的性質(zhì)及勾股定理求出OE,OF的長度,則菱形的面積可求.【詳解】(1)證明:,四邊形是平行四邊形是的角平分線又四邊形是菱形(2)連接交于點四邊形是菱形,,在中,由勾股定理得【點睛】本題主要考查菱形的判定及性質(zhì),掌握菱形的性質(zhì)和勾股定理是解題的關(guān)鍵.20、(1)作圖見解析;(2)米.【分析】(1)連接AC,過D點作AC的平行線即可;(2)過M作MN⊥DE于N,利用相似三角形列出比例式求出旗桿的高度即可.【詳解】(1)如圖所示,線段MG和GE是旗桿在陽光下形成的影子.(2)過點M作MN⊥DE于點N.設(shè)旗桿的影子落在墻上的高度為xm,由題意得△DMN∽△ACB,∴.又∵AB=1.6m,BC=2.4m,DN=DE-NE=(15-x)m,MN=EG=16m,∴,解得x=.答:旗桿的影子落在墻上的高度為m.【點睛】本題考查了相似三角形的知識,解題的關(guān)鍵是正確的構(gòu)造直角三角形.21、或.【詳解】解:如圖所示,連接CD,∵直線為⊙C的切線,∴CD⊥AD.∵C點坐標(biāo)為(1,0),∴OC=1,即⊙C的半徑為1,∴CD=OC=1.又∵點A的坐標(biāo)為(—1,0),∴AC=2,∴∠CAD=30°,在Rt△AOB中,,即,設(shè)直線l解析式為:y=kx+b(k≠0),則解得∴直線l的函數(shù)解析式為,同理可得,當(dāng)直線l在x軸的下方時,直線l的函數(shù)解析式為.故直線l的函數(shù)解析式為或.【點睛】這是一道圓與直角坐標(biāo)系的綜合題,求直線的解析式,通常用待定系數(shù)法(知道圖象上兩個點的坐標(biāo)即可),題目已給出點A的坐標(biāo),再求出一個點即可,抓住點D是直線與⊙C的切點,由C點坐標(biāo)為(1,0)及圓的性質(zhì)易求點B的坐標(biāo)為(0,),由點A和點B的坐標(biāo)易求直線的解析式22、(1)y=﹣x2+3x+4;(﹣1,0);(2)P的橫坐標(biāo)為或.(3)點P的坐標(biāo)為(4,0)或(5,﹣6)或(2,6).【分析】(1)利用待定系數(shù)法求拋物線解析式,然后利用拋物線解析式得到一元二次方程,通過解一元二次方程得到C點坐標(biāo);(2)利用△AQP∽△AOC得到AQ=4PQ,設(shè)P(m,﹣m2+3m+4),所以m=4|4﹣(﹣m2+3m+4|,然后解方程4(m2﹣3m)=m和方程4(m2﹣3m)=﹣m得P點坐標(biāo);(3)設(shè)P(m,﹣m2+3m+4)(m>),當(dāng)點Q′落在x軸上,延長QP交x軸于H,如圖2,則PQ=m2﹣3m,證明Rt△AOQ′∽Rt△Q′HP,利用相似比得到Q′B=4m﹣12,則OQ′=12﹣3m,在Rt△AOQ′中,利用勾股定理得到方程42+(12﹣3m)2=m2,然后解方程求出m得到此時P點坐標(biāo);當(dāng)點Q′落在y軸上,易得點A、Q′、P、Q所組成的四邊形為正方形,利用PQ=PQ′得到|m2﹣3m|=m,然后解方程m2﹣3m=m和方程m2﹣3m=﹣m得此時P點坐標(biāo).【詳解】解:(1)把A(0,4),B(4,0)分別代入y=﹣x2+bx+c得,解得,∴拋物線解析式為y=﹣x2+3x+4,當(dāng)y=0時,﹣x2+3x+4=0,解得x1=﹣1,x2=4,∴C(﹣1,0);故答案為y=﹣x2+3x+4;(﹣1,0);(2)∵△AQP∽△AOC,∴,∴,即AQ=4PQ,設(shè)P(m,﹣m2+3m+4),∴m=4|4﹣(﹣m2+3m+4|,即4|m2﹣3m|=m,解方程4(m2﹣3m)=m得m1=0(舍去),m2=,此時P點橫坐標(biāo)為;解方程4(m2﹣3m)=﹣m得m1=0(舍去),m2=,此時P點坐標(biāo)為;綜上所述,點P的坐標(biāo)為(,)或(,);(3)設(shè),當(dāng)點Q′落在x軸上,延長QP交x軸于H,如圖2,則PQ=4﹣(﹣m2+3m+4)=m2﹣3m,∵△APQ沿AP對折,點Q的對應(yīng)點為點Q',∴∠AQ′P=∠AQP=90°,AQ′=AQ=m,PQ′=PQ=m2﹣3m,∵∠AQ′O=∠Q′PH,∴Rt△AOQ′∽Rt△Q′HP,∴,即,解得Q′H=4m﹣12,∴OQ′=m﹣(4m﹣12)=12﹣3m,在Rt△AOQ′中,42+(12﹣3m)2=m2,整理得m2﹣9m+20=0,解得m1=4,m2=5,此時P點坐標(biāo)為(4,0)或(5,﹣6);當(dāng)點Q′落在y軸上,則點A、Q′、P、Q所組成的四邊形為正方形,∴PQ=AQ′,即|m2﹣3m|=m,解方程m2﹣3m=m得m1=0(舍去),m2=4,此時P點坐標(biāo)為(4,0);解方程m2﹣3m=﹣m得m1=0(舍去),m2=2,此時P點坐標(biāo)為(2,6),綜上所述,點P的坐標(biāo)為(4,0)或(5,﹣6)或(2,6)【點睛】本題考查了待定系數(shù)法,相似三角形的性質(zhì),解一元二次方程,三角形折疊,題目綜合性較強,解決本題的關(guān)鍵是:①熟練掌握待定系數(shù)法求函數(shù)解析式;②能夠熟練掌握相似三角形的判定和性質(zhì);③能夠熟練掌握一元二次方程的解法;④理解折疊的性質(zhì).23、(1)0.6萬元;(2)2元【分析】(1)根據(jù)利潤=單件利潤×數(shù)量﹣員工每人每月的工資×員工數(shù)﹣其它費用,即可求出結(jié)論;(2)設(shè)他們將該電子產(chǎn)品的銷售單價定為x元,則月銷售量為[12000﹣1000(x﹣6)]件,根據(jù)第二個月的利潤為3.4萬元,即可得出關(guān)于x的一元二次方程,即可求解.【詳解】(1)(6﹣4)×12000﹣3500×6﹣9000=6000(元),6000元=0.6萬元.答:小王他們第一個月可以償還0.6萬元的無息貸款.(2)設(shè)他們將該電子產(chǎn)品的銷售單價定為x元,則月銷售量為[12000﹣1000(x﹣6)]件,依題意,得:(x﹣4)[12000﹣1000(x﹣6)]﹣3500×6﹣9

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論