2022年廣東省河源市和平縣九年級數(shù)學第一學期期末統(tǒng)考模擬試題含解析_第1頁
2022年廣東省河源市和平縣九年級數(shù)學第一學期期末統(tǒng)考模擬試題含解析_第2頁
2022年廣東省河源市和平縣九年級數(shù)學第一學期期末統(tǒng)考模擬試題含解析_第3頁
2022年廣東省河源市和平縣九年級數(shù)學第一學期期末統(tǒng)考模擬試題含解析_第4頁
2022年廣東省河源市和平縣九年級數(shù)學第一學期期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.將一副學生常用的三角板如下圖擺放在一起,組成一個四邊形,連接,則的值為()A. B. C. D.2.如圖是某零件的模型,則它的左視圖為()A. B. C. D.3.用配方法解下列方程時,配方有錯誤的是()A.化為 B.化為C.化為 D.化為4.如圖,點O是五邊形ABCDE和五邊形A1B1C1D1E1的位似中心,若OA:OA1=1:3,則五邊形ABCDE和五邊形A1B1C1D1E1的面積比是()A.1:2 B.1:3 C.1:4 D.1:95.下列關系式中,y是x的反比例函數(shù)的是()A.y=4x B. C. D.6.如圖,正五邊形ABCDE內接于⊙O,則∠ABD的度數(shù)為()A.60° B.72° C.78° D.144°7.如圖,四邊形ABCD是圓內接四邊形,E是BC延長線上一點,若∠BAD=105°,則∠DCE的大小是()A.115° B.105° C.100° D.95°8.下列式子中最簡二次根式是()A. B. C. D.9.不透明袋子中裝有紅、綠小球各一個,除顏色外無其他差別,隨機摸出一個小球后,放回并搖勻,再隨機摸出一個,兩次都摸到顏色相同的球的概率為()A. B. C. D.10.已知⊙O的半徑為4,點P到圓心O的距離為4.5,則點P與⊙O的位置關系是()A.P在圓內 B.P在圓上 C.P在圓外 D.無法確定二、填空題(每小題3分,共24分)11.有三張除顏色外,大小、形狀完全相同的卡片,第一張卡片兩面都是紅色,第二張卡片兩面都是白色,第三張卡片一面是紅色,一面是白色,用三只杯子分別把它們遮蓋住,若任意移開其中的一只杯子,則看到的這張卡片兩面都是紅色的概率是__________.12.若,,,則的度數(shù)為__________13.若關于x的一元二次方程的一個根是0,則另一個根是________.14.如圖,在△ABC中,AB≠AC.D,E分別為邊AB,AC上的點.AC=3AD,AB=3AE,點F為BC邊上一點,添加一個條件:______,可以使得△FDB與△ADE相似.(只需寫出一個)

15.如圖,為測量某河的寬度,在河對岸邊選定一個目標點A,在近岸取點B,C,D,使得AB⊥BC,CD⊥BC,點E在BC上,并且點A,E,D在同一條直線上.若測得BE=10m,EC=5m,CD=8m,則河的寬度AB長為______________m.16.拋物線y=﹣2x2+3x﹣7與y軸的交點坐標為_____.17.在一個不透明的袋中有2個紅球,若干個白球,它們除顏色外其它都相同,若隨機從袋中摸出一個球,摸到紅球的概率是,則袋中有白球_________個.18.如圖,在平面直角坐標系中,點A在拋物線y=x2﹣2x+2上運動.過點A作AC⊥x軸于點C,以AC為對角線作矩形ABCD,連結BD,則對角線BD的最小值為_______.三、解答題(共66分)19.(10分)如圖,已知,,,,.(1)求和的大小;(2)求的長20.(6分)把大小和形狀完全相同的6張卡片分成兩組,每組3張,分別標上1、2、3,將這兩組卡片分別放入兩個盒子中攪勻,再從中隨機抽取一張.(1)試求取出的兩張卡片數(shù)字之和為奇數(shù)的概率;(2)若取出的兩張卡片數(shù)字之和為奇數(shù),則甲勝;取出的兩張卡片數(shù)字之和為偶數(shù),則乙勝;試分析這個游戲是否公平?請說明理由.21.(6分)如圖,已知線段,于點,且,是射線上一動點,,分別是,的中點,過點,,的圓與的另一交點(點在線段上),連結,.(1)當時,求的度數(shù);(2)求證:;(3)在點的運動過程中,當時,取四邊形一邊的兩端點和線段上一點,若以這三點為頂點的三角形是直角三角形,且為銳角頂點,求所有滿足條件的的值.22.(8分)先化簡,再求值:,其中.23.(8分)在平面直角坐標系中,直線與反比例函數(shù)的圖象的兩個交點分別為點(,)和點.(1)求的值和點的坐標;(2)如果點為軸上的一點,且∠直接寫出點A的坐標.24.(8分)解方程25.(10分)如圖,在A港口的正東方向有一港口B.某巡邏艇從A港口沿著北偏東60°方向巡邏,到達C處時接到命令,立刻在C處沿東南方向以20海里/小時的速度行駛2小時到達港口B.求A,B兩港之間的距離(結果保留根號).26.(10分)(1)如圖①,在△ABC中,AB=m,AC=n(n>m),點P在邊AC上.當AP=時,△APB∽△ABC;(2)如圖②,已知△DEF(DE>DF),請用直尺和圓規(guī)在直線DF上求作一點Q,使DE是線段DF和DQ的比例項.(保留作圖痕跡,不寫作法)

參考答案一、選擇題(每小題3分,共30分)1、B【分析】設AC、BD交于點E,過點C作CF⊥BD于點F,過點E作EG⊥CD于點G,則CF∥AB,△CDF和△DEG都是等腰直角三角形,設AB=2,則易求出CF=,由△CEF∽△AEB,可得,于是設EF=,則,然后利用等腰直角三角形的性質可依次用x的代數(shù)式表示出CF、CD、DE、DG、EG的長,進而可得CG的長,然后利用正切的定義計算即得答案.【詳解】解:設AC、BD交于點E,過點C作CF⊥BD于點F,過點E作EG⊥CD于點G,則CF∥AB,△CDF和△DEG都是等腰直角三角形,∴△CEF∽△AEB,設AB=2,∵∠ADB=30°,∴BD=,∵∠BDC=∠CBD=45°,CF⊥BD,∴CF=DF=BF==,∴,設EF=,則,∴,∴,,∴,∴,∴.故選:B.【點睛】本題以學生常見的三角板為載體,考查了銳角三角函數(shù)和特殊角的三角函數(shù)值、30°角的直角三角形的性質、等腰三角形的性質等知識,構圖簡潔,但有相當?shù)碾y度,正確添加輔助線、熟練掌握等腰直角三角形的性質和銳角三角函數(shù)的知識是解題的關鍵.2、D【分析】找到從左面看所得到的圖形即可,注意所有的看到的棱都應表現(xiàn)在視圖中.【詳解】從左面看去,是兩個有公共邊的矩形,如圖所示:故選:D.【點睛】本題考查了三視圖的知識,左視圖是從物體的左面看得到的視圖.視圖中每一個閉合的線框都表示物體上的一個平面,而相連的兩個閉合線框常不在一個平面上.3、C【分析】根據配方法的一般步驟:(1)把常數(shù)項移到等號的右邊;(2)把二次項的系數(shù)化為1;(3)等式兩邊同時加上一次項系數(shù)一半的平方分別進行配方,即可求出答案.【詳解】A、由原方程,得,等式的兩邊同時加上一次項系數(shù)2的一半的平方1,得;故本選項正確;B、由原方程,得,等式的兩邊同時加上一次項系數(shù)?7的一半的平方,得,,故本選項正確;C、由原方程,得,等式的兩邊同時加上一次項系數(shù)8的一半的平方16,得(x+4)2=7;故本選項錯誤;D、由原方程,得3x2?4x=2,化二次項系數(shù)為1,得x2?x=等式的兩邊同時加上一次項系數(shù)?的一半的平方,得;故本選項正確.故選:C.【點睛】此題考查了配方法解一元二次方程,解題時要注意解題步驟的準確應用.選擇用配方法解一元二次方程時,最好使方程的二次項的系數(shù)為1,一次項的系數(shù)是2的倍數(shù).4、D【分析】由點O是五邊形ABCDE和五邊形A1B1C1D1E1的位似中心,OA:OA1=1:3,可得位似比為1:3,根據相似圖形的面積比等于相似比的平方,即可求得答案.【詳解】∵點O是五邊形ABCDE和五邊形A1B1C1D1E1的位似中心,OA:OA1=1:3,∴五邊形ABCDE和五邊形A1B1C1D1E1的位似比為1:3,∴五邊形ABCDE和五邊形A1B1C1D1E1的面積比是1:1.故選:D.【點睛】此題考查了位似圖形的性質.此題比較簡單,注意相似圖形的周長的比等于相似比,相似圖形的面積比等于相似比的平方.5、C【解析】根據反比例函數(shù)的定義判斷即可.【詳解】A、y=4x是正比例函數(shù);B、=3,可以化為y=3x,是正比例函數(shù);C、y=﹣是反比例函數(shù);D、y=x2﹣1是二次函數(shù);故選C.【點睛】本題考查的是反比例函數(shù)的定義,形如y=(k為常數(shù),k≠0)的函數(shù)稱為反比例函數(shù).6、B【分析】如圖(見解析),先根據正五邊形的性質得圓心角的度數(shù),再根據圓周角定理即可得.【詳解】如圖,連接OA、OE、OD由正五邊形的性質得:由圓周角定理得:(一條弧所對圓周角等于其所對圓心角的一半)故選:B.【點睛】本題考查了正五邊形的性質、圓周角定理,熟記性質和定理是解題關鍵.7、B【分析】根據圓內接四邊形的對角互補得到∠BAD+∠BCD=180°,而∠BCD與∠DEC為鄰補角,得到∠DCE=∠BAD=105°.【詳解】解:∵四邊形ABCD是圓內接四邊形,∴∠BAD+∠BCD=180°,而∠BCD+∠DCE=180°,∴∠DCE=∠BAD,而∠BAD=105°,∴∠DCE=105°.故選B.8、A【解析】根據最簡二次根式的定義:被開方數(shù)是整數(shù)或整式,且不含開得盡方的因數(shù)或因式進行判斷即可.【詳解】A.是最簡二次根式,符合題意;B.,不是最簡二次根式,不符合題意;C.被開方數(shù)是分數(shù),不是最簡二次根式,不符合題意;D.被開方數(shù)是分數(shù),不是最簡二次根式,不符合題意;故選A.【點睛】本題考查最簡二次根式,熟練掌握最簡二次根式的定義是解題的關鍵.9、C【分析】用列表法或樹狀圖法可以列舉出所有等可能出現(xiàn)的結果,然后看符合條件的占總數(shù)的幾分之幾即可【詳解】解:兩次摸球的所有的可能性樹狀圖如下:

共有4種等可能的結果,其中兩次都摸到顏色相同的球結果共有2種,

∴兩次都摸到顏色相同的球的概率為.

故選C.【點睛】本題考查用樹狀圖或列表法求等可能事件發(fā)生的概率,關鍵是列舉出所有等可能出現(xiàn)的結果數(shù),然后用分數(shù)表示,同時注意“放回”與“不放回”的區(qū)別.10、C【解析】點到圓心的距離大于半徑,得到點在圓外.【詳解】∵點P到圓心O的距離為4.5,⊙O的半徑為4,∴點P在圓外.故選:C.【點睛】此題考查點與圓的位置關系,通過比較點到圓心的距離d的距離與半徑r的大小確定點與圓的位置關系.二、填空題(每小題3分,共24分)11、【分析】根據概率的相關性質,可知兩面都是紅色的概率=兩面都是紅色的張數(shù)/總張數(shù).【詳解】P(兩面都是紅色)=.【點睛】本題主要考察了概率的相關性質.12、【分析】先根據三角形相似求,再根據三角形內角和計算出的度數(shù).【詳解】解:如圖:∵∠A=50°,,

∴∵,

故答案為.【點睛】本題考查了相似三角形的性質:相似三角形的對應角相等.13、1【解析】設x1,x2是關于x的一元二次方程x2?x+k=0的兩個根,∵關于x的一元二次方程x2?x+k=0的一個根是0,∴由韋達定理,得x1+x2=1,即x2=1,即方程的另一個根是1.故答案為1.14、或【解析】因為,,,所以,欲使與相似,只需要與相似即可,則可以添加的條件有:∠A=∠BDF,或者∠C=∠BDF,等等,答案不唯一.【方法點睛】在解決本題目,直接處理與,無從下手,沒有公共邊或者公共角,稍作轉化,通過,與相似.這時,柳暗花明,迎刃而解.15、16【分析】先證明,然后再根據相似三角形的性質求解即可.【詳解】∵AB⊥BC,CD⊥BC且∠AEB=∠DEC∴∴∴故本題答案為:16.【點睛】本題考查了相似三角形的應用,準確識圖,熟練掌握和靈活運用相似三角形的判定定理與性質定理是解題的關鍵.16、(0,﹣7)【分析】根據題意得出,然后求出y的值,即可以得到與y軸的交點坐標.【詳解】令,得,故與y軸的交點坐標是:(0,﹣7).故答案為:(0,﹣7).【點睛】本題考查了拋物線與y軸的交點坐標問題,掌握與y軸的交點坐標的特點()是解題的關鍵.17、6【分析】根據概率公式結合取出紅球的概率即可求出袋中球的總個數(shù).【詳解】解:設袋中有x個球.根據題意得,解得x=8(個),8-2=6個,∴袋中有8個白球.故答案為:6.【點睛】此題考查了概率的計算方法,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率P(A)=.18、1【分析】根據矩形的性質得到BD=AC,所以求BD的最小值就是求AC的最小值,當點A在拋物線頂點的時候AC是最小的.【詳解】解:∵,∴拋物線的頂點坐標為(1,1),∵四邊形ABCD為矩形,∴BD=AC,而AC⊥x軸,∴AC的長等于點A的縱坐標,當點A在拋物線的頂點時,點A到x軸的距離最小,最小值為1,∴對角線BD的最小值為1.故答案為:1.【點睛】本題考查矩形的性質和二次函數(shù)圖象的性質,解題的關鍵是通過矩形的性質將要求的BD轉化成可以求最小值的AC.三、解答題(共66分)19、(1),;(2)4cm【分析】(1)由題意根據相似三角形的性質以及三角形內角和為180°,分別進行分析計算即可;(2)根據相似三角形的性質即對應邊的比相等列出比例式,代入相關線段長度進行分析計算即可得出答案.【詳解】解:(1),,,,,,.(2),∴,∵,,,∴,∴.【點睛】本題考查的是相似三角形的性質,熟練掌握相似三角形的對應邊的比相等以及對應角相等是解題的關鍵.20、(1)(2)不公平【解析】試題分析:(1)依據題意畫樹狀圖法分析所有等可能和出現(xiàn)所有結果的可能,然后根據概率公式求出該事件的概率;(2)根據(1)中所求,進而求出兩人獲勝的概率,即可得出答案.解:(1)畫樹狀圖得:,由上圖可知,所有等可能結果共有9種,其中兩張卡片數(shù)字之和為奇數(shù)的結果有4種.∴P=.(2)不公平;理由:由(1)可得出:取出的兩張卡片數(shù)字之和為偶數(shù)的概率為:.∵<,∴這個游戲不公平.考點:游戲公平性;列表法與樹狀圖法.21、(1)75°;(2)證明見解析;(3)或或.【分析】(1)根據三角形ABP是等腰三角形,可得∠B的度數(shù);(2)連接MD,根據MD為△PAB的中位線,可得∠MDB=∠APB,再根據∠BAP=∠ACB,∠BAP=∠B,即可得到∠ACB=∠B,進而得出△ABC∽△PBA,得出答案即可;(3)記MP與圓的另一個交點為R,根據AM2+MR2=AR2=AC2+CR2,即可得到PR=,MR=,再根據Q為直角三角形銳角頂點,分四種情況進行討論:當∠ACQ=90°時,當∠QCD=90°時,當∠QDC=90°時,當∠AEQ=90°時,即可求得MQ的值.【詳解】解:(1)∵MN⊥AB,AM=BM,∴PA=PB,∴∠PAB=∠B,∵∠APB=30°,∴∠B=75°,(2)如圖1,連接MD,∵MD為△PAB的中位線,∴MD∥AP,∴∠MDB=∠APB,∵∠BAC=∠MDC=∠APB,又∵∠BAP=180°-∠APB-∠B,∠ACB=180°-∠BAC-∠B,∴∠BAP=∠ACB,∵∠BAP=∠B,∴∠ACB=∠B,∴AC=AB,由(1)可知PA=PB,∴△ABC∽△PBA,∴,∴AB2=BC?PB;(3)如圖2,記MP與圓的另一個交點為R,∵MD是Rt△MBP的中線,∴DM=DP,∴∠DPM=∠DMP=∠RCD,∴RC=RP,∵∠ACR=∠AMR=90°,∴AM2+MR2=AR2=AC2+CR2,∴12+MR2=22+PR2,∴12+(4-PR)2=22+PR2,∴PR=,∴MR=,(一)當∠ACQ=90°時,AQ為圓的直徑,∴Q與R重合,∴MQ=MR=;(二)如圖3,當∠QCD=90°時,在Rt△QCP中,PQ=2PR=,∴MQ=;(三)如圖4,當∠QDC=90°時,∵BM=1,MP=4,∴BP=,∴DP=BP=,∵cos∠MPB=,∴PQ=,∴MQ=;(四)如圖5,當∠AEQ=90°時,由對稱性可得∠AEQ=∠BDQ=90°,∴MQ=;綜上所述,MQ的值為或或.【點睛】此題主要考查了圓的綜合題、等腰三角形的性質、三角形中位線定理,勾股定理,圓周角定理的綜合應用,解決問題的關鍵是作輔助線構造直角三角形,運用旋轉的性質以及含30°角的直角三角形的性質進行計算求解,解題時注意分類思想的運用.22、;.【分析】根據分式的運算法則即可化簡,再代入a即可求解.【詳解】解:原式把代入上式,得:原式【點睛】此題主要考查分式的運算,解題的關鍵是熟知分式運算法則.23、(1)k=1,Q(-1,-1).(2)【分析】(1)將點P代入直線中即可求出m的值,再將P點代入反比例函數(shù)中即可得出k的值,通過直線與反比例函數(shù)聯(lián)立即可求出Q的坐標;(2)先求出PQ之間的距離,再利用直角三角形斜邊的中線等于斜邊的一半即可求出點A的坐標.【詳解】解:(1)∵點

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論