2022-2023學(xué)年安徽省淮南市成考專升本高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第1頁(yè)
2022-2023學(xué)年安徽省淮南市成考專升本高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第2頁(yè)
2022-2023學(xué)年安徽省淮南市成考專升本高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第3頁(yè)
2022-2023學(xué)年安徽省淮南市成考專升本高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第4頁(yè)
2022-2023學(xué)年安徽省淮南市成考專升本高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩28頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年安徽省淮南市成考專升本高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(50題)1.設(shè)z=y2x,則等于().A.2xy2x-11

B.2y2x

C.y2xlny

D.2y2xlny

2.設(shè)球面方程為(x-1)2+(y+2)2+(z-3)2=4,則該球的球心坐標(biāo)與半徑分別為()A.(-1,2,-3);2B.(-1,2,-3);4C.(1,-2,3);2D.(1,-2,3);4

3.

4.A.A.

B.

C.

D.

5.設(shè)函數(shù)f(x)在x=1處可導(dǎo),且,則f'(1)等于().A.A.1/2B.1/4C.-1/4D.-1/2

6.方程x=z2表示的二次曲面是A.A.球面B.橢圓拋物面C.柱面D.圓錐面

7.設(shè)有直線

當(dāng)直線l1與l2平行時(shí),λ等于().A.A.1

B.0

C.

D.一1

8.A.-3-xln3

B.-3-x/ln3

C.3-x/ln3

D.3-xln3

9.下列命題中正確的有()A.A.

B.

C.

D.

10.

11.

12.圖示結(jié)構(gòu)中,F(xiàn)=10N,I為圓桿,直徑d=15mm,2為正方形截面桿,邊長(zhǎng)為a=20mm,α=30。,則各桿強(qiáng)度計(jì)算有誤的一項(xiàng)為()。

A.1桿受拉20kNB.2桿受壓17.3kNC.1桿拉應(yīng)力50MPaD.2桿壓應(yīng)力43.3MPa

13.

14.設(shè)y=2x3,則dy=().

A.2x2dx

B.6x2dx

C.3x2dx

D.x2dx

15.

16.A.A.

B.

C.

D.

17.

18.設(shè)y=cos4x,則dy=()。A.4sin4xdxB.-4sin4xdxC.(1/4)sin4xdxD.-(1/4)sin4xdx

19.

20.A.A.1B.2C.3D.4

21.微分方程(y)2+(y)3+sinx=0的階數(shù)為

A.1B.2C.3D.4

22.微分方程y'=1的通解為A.y=xB.y=CxC.y=C-xD.y=C+x

23.設(shè)f(x),g(x)在[a,b]上連續(xù),則()。

A.若,則在[a,b]上f(x)=0

B.若,則在[a,b]上f(x)=g(x)

C.若a<c<d<b,則

D.若f(x)≤g(z),則

24.設(shè)f'(x0)=0,f"(x0)<0,則下列結(jié)論必定正確的是().A.A.x0為f(x)的極大值點(diǎn)

B.x0為f(x)的極小值點(diǎn)

C.x0不為f(x)的極值點(diǎn)

D.x0可能不為f(x)的極值點(diǎn)

25.則f(x)間斷點(diǎn)是x=()。A.2B.1C.0D.-1

26.

A.

B.1

C.2

D.+∞

27.

28.

29.A.A.>0B.<0C.=0D.不存在30.

31.由曲線,直線y=x,x=2所圍面積為

A.

B.

C.

D.

32.

33.

34.

35.設(shè)f'(x)=1+x,則f(x)等于().A.A.1

B.X+X2+C

C.x++C

D.2x+x2+C

36.在空間直角坐標(biāo)系中,方程x+z2=z的圖形是A.A.圓柱面B.圓C.拋物線D.旋轉(zhuǎn)拋物面

37.設(shè)函數(shù)f(x)在區(qū)間[0,1]上可導(dǎo),且f(x)>0,則()

A.f(1)>f(0)B.f(1)<f(0)C.f(1)=f(0)D.f(1)與f(0)的值不能比較38.f(x)在x=0有二階連續(xù)導(dǎo)數(shù),則f(x)在x=0處()。A.取極小值B.取極大值C.不取極值D.以上都不對(duì)39.設(shè)f(x)為連續(xù)函數(shù),則下列關(guān)系式中正確的是()A.A.

B.

C.

D.

40.

41.

42.

43.設(shè)y1,y2為二階線性常系數(shù)微分方程y"+p1y+p2y=0的兩個(gè)特解,則C1y1+C2y2()A.為所給方程的解,但不是通解B.為所給方程的解,但不一定是通解C.為所給方程的通解D.不為所給方程的解44.()。A.e-2

B.e-2/3

C.e2/3

D.e2

45.設(shè)f(xo)=0,f(xo)<0,則下列結(jié)論中必定正確的是

A.xo為f(x)的極大值點(diǎn)

B.xo為f(x)的極小值點(diǎn)

C.xo不為f(x)的極值點(diǎn)

D.xo可能不為f(x)的極值點(diǎn)

46.

47.設(shè)函數(shù)y=f(x)二階可導(dǎo),且f(x)<0,f(x)<0,又△y=f(x+△x)-f(x),dy=f(x)△x,則當(dāng)△x>0時(shí),有()A.△y>dy>0

B.△<dy<0

C.dy>Ay>0

D.dy<△y<0

48.級(jí)數(shù)(a為大于0的常數(shù))().A.A.絕對(duì)收斂B.條件收斂C.發(fā)散D.收斂性與a有關(guān)

49.下列函數(shù)中,在x=0處可導(dǎo)的是()

A.y=|x|

B.

C.y=x3

D.y=lnx

50.

二、填空題(20題)51.

52.

53.

54.

55.

56.

57.

58.過點(diǎn)M0(1,2,-1)且與平面x-y+3z+1=0垂直的直線方程為_________。

59.

60.

61.

62.

63.

64.

65.

66.設(shè)y=lnx,則y'=_________。

67.68.

69.

70.

三、計(jì)算題(20題)71.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.

72.

73.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

74.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.

75.求微分方程y"-4y'+4y=e-2x的通解.

76.

77.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則78.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.79.求曲線在點(diǎn)(1,3)處的切線方程.80.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.

81.

82.證明:83.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).84.85.求微分方程的通解.86.87.88.將f(x)=e-2X展開為x的冪級(jí)數(shù).89.

90.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

四、解答題(10題)91.在曲線y=x2(x≥0)上某點(diǎn)A(a,a2)處作切線,使該切線與曲線及x軸所圍成的圖形的面積為1/12.試求:(1)切點(diǎn)A的坐標(biāo)((a,a2).(2)過切點(diǎn)A的切線方程.92.

93.

94.

95.

96.計(jì)算

97.

98.99.(本題滿分8分)設(shè)y=x+arctanx,求y.100.計(jì)算不定積分五、高等數(shù)學(xué)(0題)101.x=f(x,y)由x2+y2+z2=1確定,求zx,zy。

六、解答題(0題)102.

參考答案

1.D本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的運(yùn)算.

z=y2x,若求,則需將z認(rèn)定為指數(shù)函數(shù).從而有

可知應(yīng)選D.

2.C

3.D

4.D

5.B本題考查的知識(shí)點(diǎn)為可導(dǎo)性的定義.

當(dāng)f(x)在x=1處可導(dǎo)時(shí),由導(dǎo)數(shù)定義可得

可知f'(1)=1/4,故應(yīng)選B.

6.C方程x=z2中缺少坐標(biāo)y,是以xOy坐標(biāo)面上的拋物線x=z2為準(zhǔn)線,平行于y軸的直線為母線的拋物柱面。所以選C。

7.C本題考查的知識(shí)點(diǎn)為直線間的關(guān)系.

8.A由復(fù)合函數(shù)鏈?zhǔn)椒▌t可知,因此選A.

9.B

10.D

11.D

12.C

13.D解析:

14.B由微分基本公式及四則運(yùn)算法則可求得.也可以利用dy=y′dx求得故選B.

15.D解析:

16.B

17.A解析:

18.B

19.B解析:

20.D

21.B

22.D

23.D由定積分性質(zhì):若f(x)≤g(x),則

24.A本題考查的知識(shí)點(diǎn)為函數(shù)極值的第二充分條件.

由極值的第二充分條件可知應(yīng)選A.

25.Df(x)為分式,當(dāng)X=-l時(shí),分母x+1=0,分式?jīng)]有意義,因此點(diǎn)x=-1為f(x)的間斷點(diǎn),故選D。

26.C

27.C

28.A解析:

29.C被積函數(shù)sin5x為奇函數(shù),積分區(qū)間[-1,1]為對(duì)稱區(qū)間。由定積分的對(duì)稱性質(zhì)知選C。

30.B

31.B

32.D

33.D

34.C

35.C本題考查的知識(shí)點(diǎn)為不定積分的性質(zhì).

可知應(yīng)選C.

36.A

37.A由f"(x)>0說(shuō)明f(x)在[0,1]上是增函數(shù),因?yàn)?>0,所以f(1)>f(0)。故選A。

38.B;又∵分母x→0∴x=0是駐點(diǎn);;即f""(0)=一1<0,∴f(x)在x=0處取極大值

39.B本題考查的知識(shí)點(diǎn)為:若f(x)可積分,則定積分的值為常數(shù);可變上限積分求導(dǎo)公式的運(yùn)用.

注意到A左端為定積分,定積分存在時(shí),其值一定為常數(shù),常量的導(dǎo)數(shù)等于零.因此A不正確.

由可變上限積分求導(dǎo)公式可知B正確.C、D都不正確.

40.A

41.A

42.C

43.B如果y1,y2這兩個(gè)特解是線性無(wú)關(guān)的,即≠C,則C1y1+C2y2是其方程的通解?,F(xiàn)在題設(shè)中沒有指出是否線性無(wú)關(guān),所以可能是通解,也可能不是通解,故選B。

44.B

45.A

46.B

47.B

48.A本題考查的知識(shí)點(diǎn)為級(jí)數(shù)絕對(duì)收斂與條件收斂的概念.

注意為p=2的p級(jí)數(shù),因此為收斂級(jí)數(shù),由比較判別法可知收斂,故絕對(duì)收斂,應(yīng)選A.

49.C選項(xiàng)A中,y=|x|,在x=0處有尖點(diǎn),即y=|x|在x=0處不可導(dǎo);選項(xiàng)B中,在x=0處不存在,即在x=0處不可導(dǎo);選項(xiàng)C中,y=x3,y'=3x2處處存在,即y=x3處處可導(dǎo),也就在x=0處可導(dǎo);選項(xiàng)D中,y=lnx,在x=0處不存在,y=lnx在x=0處不可導(dǎo)(事實(shí)上,在x=0點(diǎn)就沒定義).

50.A

51.

52.3/2

53.2/3

54.

55.-sinx

56.

本題考查的知識(shí)點(diǎn)為二階常系數(shù)線性微分方程的求解.

57.eab

58.

59.(-∞0]

60.061.e;本題考查的知識(shí)點(diǎn)為極限的運(yùn)算.

注意:可以變形,化為形式的極限.但所給極限通??梢韵茸冃危?/p>

62.ee解析:

63.

本題考查的知識(shí)點(diǎn)為重要極限公式.

64.y=1/2y=1/2解析:

65.本題考查的知識(shí)點(diǎn)為微分的四則運(yùn)算.

注意若u,v可微,則

66.1/x

67.

68.-2/π本題考查了對(duì)由參數(shù)方程確定的函數(shù)求導(dǎo)的知識(shí)點(diǎn).

69.eyey

解析:

70.0<k≤10<k≤1解析:

71.

72.

73.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%74.由二重積分物理意義知

75.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

76.

77.由等價(jià)無(wú)窮小量的定義可知

78.

79.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

80.函數(shù)的定義域?yàn)?/p>

注意

81.

82.

83.

列表:

說(shuō)明

84.

85.

86.

87.

88.89.由一階線性微分方程通解公式有

90.

91.由于y=x2,則y'=2x,曲線y=x2上過點(diǎn)A(a,a2)的切線方程為y-a2=2a(x-a),即y=2ax-a2,曲線y=x2,其過點(diǎn)A(a,a2)的切線及x軸圍成的平面圖形的面積

由題設(shè)S=1/12,可得a=1,因此A點(diǎn)的坐標(biāo)為(1,1).過A點(diǎn)的切線方程為y-1=2(x-1)或y=2x-1.解析:本題考查的知識(shí)點(diǎn)為定積分的幾何意義和曲線的切線方程。本題在利用定積分表示平面圖形時(shí),以y為積分變量,以簡(jiǎn)化運(yùn)算,這是值得注意的技巧。

92.

93.

94.

95.

96.本題考查的知識(shí)點(diǎn)為定積分的換元積分法.

9

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論