版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年山東省萊蕪市成考專升本高等數(shù)學(xué)一自考測試卷(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(50題)1.微分方程(y)2=x的階數(shù)為()A.1B.2C.3D.4
2.
3.設(shè)在點x=1處連續(xù),則a等于()。A.-1B.0C.1D.2
4.
A.2x+1B.2xy+1C.x2+1D.2xy
5.下列命題正確的是().A.A.
B.
C.
D.
6.
有()個間斷點。
A.1B.2C.3D.4
7.若收斂,則下面命題正確的是()A.A.
B.
C.
D.
8.下列函數(shù)在指定區(qū)間上滿足羅爾中值定理條件的是()。A.
B.
C.
D.
9.A.0或1B.0或-1C.0或2D.1或-1
10.
11.
12.
13.方程y"+3y'=x2的待定特解y*應(yīng)取().A.A.AxB.Ax2+Bx+CC.Ax2D.x(Ax2+Bx+C)
14.
15.設(shè)x2是f(x)的一個原函數(shù),則f(x)=A.A.2x
B.x3
C.(1/3)x3+C
D.3x3+C
16.
17.
18.設(shè)f(x)為連續(xù)函數(shù),則下列關(guān)系式中正確的是()A.A.
B.
C.
D.
19.
20.
21.
22.函數(shù)y=sinx在區(qū)間[0,π]上滿足羅爾定理的ξ等于()。A.0
B.
C.
D.π
23.設(shè)函數(shù)f(x)在(0,1)內(nèi)可導(dǎo),f'(x)>0,則f(x)在(0,1)內(nèi)A.A.單調(diào)減少B.單調(diào)增加C.為常量D.不為常量,也不單調(diào)
24.
25.設(shè)函數(shù)在x=0處連續(xù),則等于()。A.2B.1/2C.1D.-2
26.
27.A.1/3B.1C.2D.3
28.
29.
30.函數(shù)y=ex+arctanx在區(qū)間[-1,1]上()
A.單調(diào)減少B.單調(diào)增加C.無最大值D.無最小值31.對于微分方程y"-2y'+y=xex,利用待定系數(shù)法求其特解y*時,下列特解設(shè)法正確的是()。A.y*=(Ax+B)ex
B.y*=x(Ax+B)ex
C.y*=Ax3ex
D.y*=x2(Ax+B)ex
32.f(x)在[a,b]上連續(xù)是f(x)在[a,b]上有界的()條件。A.充分B.必要C.充要D.非充分也非必要
33.過點(0,2,4)且平行于平面x+2z=1,y-3z=2的直線方程為
A.
B.
C.
D.-2x+3(y-2)+z-4=0
34.A.A.凹B.凸C.凹凸性不可確定D.單調(diào)減少
35.
36.()。A.
B.
C.
D.
37.A.0B.1C.2D.任意值
38.
39.交變應(yīng)力的變化特點可用循環(huán)特征r來表示,其公式為()。
A.
B.
C.
D.
40.過曲線y=xlnx上M0點的切線平行于直線y=2x,則切點M0的坐標(biāo)是().A.A.(1,0)B.(e,0)C.(e,1)D.(e,e)41.()。A.0
B.1
C.2
D.+∞
42.
43.A.收斂B.發(fā)散C.收斂且和為零D.可能收斂也可能發(fā)散44.函數(shù)f(x)=2x3-9x2+12x-3單調(diào)減少的區(qū)間為A.(-∞,1]B.[1,2]C.[2,+∞)D.[1,+∞)45.f(x)在x=0的某鄰域內(nèi)一階導(dǎo)數(shù)連續(xù)且則()。A.x=0不是f(x)的極值點B.x=0是f(x)的極大值點C.x=0是f(x)的極小值點D.x=0是f(x)的拐點
46.
47.設(shè)平面π1:2x+y+4z+4=0π1:2x-8y+Z+1=0則平面π1與π2的位置關(guān)系是A.A.相交且垂直B.相交但不垂直C.平行但不重合D.重合48.A.A.絕對收斂B.條件收斂C.發(fā)散D.收斂性與口有關(guān)49.下列運算中正確的有()A.A.
B.
C.
D.
50.
二、填空題(20題)51.設(shè)z=x2y+siny,=________。52.
53.54.
55.ylnxdx+xlnydy=0的通解是______.
56.
57.
58.設(shè)f(x)=1+cos2x,則f'(1)=__________。
59.
60.
61.
62.設(shè),則y'=______。
63.二階常系數(shù)齊次線性方程y"=0的通解為__________。
64.
65.
66.函數(shù)的間斷點為______.
67.
68.
69.
70.三、計算題(20題)71.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.72.73.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.
74.求微分方程y"-4y'+4y=e-2x的通解.
75.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則
76.
77.求曲線在點(1,3)處的切線方程.78.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達式;
(2)求S(x)的最大值.
79.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?
80.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.81.
82.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.83.將f(x)=e-2X展開為x的冪級數(shù).84.
85.
86.
87.求微分方程的通解.88.89.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.90.證明:四、解答題(10題)91.求函數(shù)f(x,y)=e2x(x+y2+2y)的極值.
92.
93.判定曲線y=3x3-4x2-x+1的凹向.
94.
95.
96.
97.
98.求由曲線y=x2(x≥0),直線y=1及Y軸圍成的平面圖形的面積·
99.計算100.將f(x)=sin3x展開為x的冪級數(shù),并指出其收斂區(qū)間。五、高等數(shù)學(xué)(0題)101.討論y=xe-x的增減性,凹凸性,極值,拐點。
六、解答題(0題)102.
參考答案
1.A
2.A
3.C本題考查的知識點為函數(shù)連續(xù)性的概念。
由于y為分段函數(shù),x=1為其分段點。在x=1的兩側(cè)f(x)的表達式不同。因此討論y=f(x)在x=1處的連續(xù)性應(yīng)該利用左連續(xù)與右連續(xù)的概念。由于
當(dāng)x=1為y=f(x)的連續(xù)點時,應(yīng)有存在,從而有,即
a+1=2。
可得:a=1,因此選C。
4.B
5.D本題考查的知識點為收斂級數(shù)的性質(zhì)和絕對收斂的概念.
由絕對收斂級數(shù)的性質(zhì)“絕對收斂的級數(shù)必定收斂”可知應(yīng)選D.
6.C
∵x=0,1,2,是f(x)的三個孤立間斷∴有3個間斷點。
7.D本題考查的知識點為級數(shù)的基本性質(zhì).
由級數(shù)收斂的必要條件:若收斂,則必有,可知D正確.而A,B,C都不正確.
本題常有考生選取C,這是由于考生將級數(shù)收斂的定義存在,其中誤認(rèn)作是un,這屬于概念不清楚而導(dǎo)致的錯誤.
8.C
9.A
10.D
11.A
12.C
13.D本題考查的知識點為二階常系數(shù)線性微分方程特解y*的取法.
由于相應(yīng)齊次方程為y"+3y'0,
其特征方程為r2+3r=0,
特征根為r1=0,r2=-3,
自由項f(x)=x2,相應(yīng)于Pn(x)eαx中α=0為單特征根,因此應(yīng)設(shè)
故應(yīng)選D.
14.A解析:
15.A由于x2為f(x)的一個原函數(shù),由原函數(shù)的定義可知f(x)=(x2)'=2x,故選A。
16.D
17.A
18.B本題考查的知識點為:若f(x)可積分,則定積分的值為常數(shù);可變上限積分求導(dǎo)公式的運用.
注意到A左端為定積分,定積分存在時,其值一定為常數(shù),常量的導(dǎo)數(shù)等于零.因此A不正確.
由可變上限積分求導(dǎo)公式可知B正確.C、D都不正確.
19.A
20.D解析:
21.D
22.C本題考查的知識點為羅爾定理的條件與結(jié)論。
23.B由于f'(x)>0,可知.f(x)在(0,1)內(nèi)單調(diào)增加。因此選B。
24.C
25.C本題考查的知識點為函數(shù)連續(xù)性的概念。由于f(x)在點x=0連續(xù),因此,故a=1,應(yīng)選C。
26.B
27.D解法1由于當(dāng)x一0時,sinax~ax,可知故選D.
解法2故選D.
28.B
29.A解析:
30.B因處處成立,于是函數(shù)在(-∞,+∞)內(nèi)都是單調(diào)增加的,故在[-1,1]上單調(diào)增加.
31.D特征方程為r2-2r+1=0,特征根為r=1(二重根),f(x)=xex,α=1為特征根,因此原方程特解y*=x2(Ax+B)ex,因此選D。
32.A定理:閉區(qū)間上的連續(xù)函數(shù)必有界;反之不一定。
33.C
34.A本題考查的知識點為利用二階導(dǎo)數(shù)符號判定曲線的凹凸性.
35.A
36.D
37.B
38.A解析:
39.A
40.D本題考查的知識點為導(dǎo)數(shù)的幾何意義.
由導(dǎo)數(shù)的幾何意義可知,若y=f(x)在點x0處可導(dǎo),則曲線y=f(x)在點(x0,f(x0))處必定存在切線,且切線的斜率為f'(x0).
由于y=xlnx,可知
y'=1+lnx,
切線與已知直線y=2x平行,直線的斜率k1=2,可知切線的斜率k=k1=2,從而有
1+lnx0=2,
可解得x0=e,從而知
y0=x0lnx0=elne=e.
故切點M0的坐標(biāo)為(e,e),可知應(yīng)選D.
41.B
42.C解析:
43.D
44.Bf(x)=2x3-9x2+12x-3的定義域為(-∞,+∞)
f'(x)=6x2-18x+12=6(x23x+2)=6(x-1)(x-2)。
令f'(x)=0得駐點x1=1,x2=2。
當(dāng)x<1時,f'(x)>0,f(x)單調(diào)增加。
當(dāng)1<x<2時,f'(x)<0,f(x)單調(diào)減少。
當(dāng)x>2時,f'(x)>0,f(x)單調(diào)增加。因此知應(yīng)選B。
45.A∵分母極限為0,分子極限也為0;(否則極限不存在)用羅必達法則同理即f"(0)一1≠0;x=0不是駐點∵可導(dǎo)函數(shù)的極值點必是駐點∴選A。
46.C解析:
47.A平面π1的法線向量n1=(2,1,4),平面π2的法線向量n2=(2,-8,1),n1*n1=0??芍獌善矫娲怪?,因此選A。
48.A
49.C本題考查的知識點為重要極限公式.
所給各極限與的形式相類似.注意到上述重要極限結(jié)構(gòu)形式為
將四個選項與其對照??梢灾缿?yīng)該選C.
50.A51.由于z=x2y+siny,可知。
52.
53.
54.
本題考查的知識點為直線的方程和直線與直線的關(guān)系.
由于兩條直線平行的充分必要條件為它們的方向向量平行,因此可取所求直線的方向向量為(2,1,-1).由直線的點向式方程可知所求直線方程為
55.(lnx)2+(lny)2=C
56.0
57.
58.-2sin2
59.2本題考查了定積分的知識點。
60.-exsiny
61.(1+x)ex(1+x)ex
解析:62.本題考查的知識點為導(dǎo)數(shù)的運算。
63.y=C1+C2x。
64.
65.(-33)(-3,3)解析:66.本題考查的知識點為判定函數(shù)的間斷點.
僅當(dāng),即x=±1時,函數(shù)沒有定義,因此x=±1為函數(shù)的間斷點。
67.
68.
69.4
70.
71.
列表:
說明
72.
73.
74.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
75.由等價無窮小量的定義可知
76.77.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
78.
79.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時,價格上漲1%需求量減少2.5%
80.
81.
則
82.由二重積分物理意義知
83.84.由一階線性微分方程通解公式有
85.
86.
87.
88.
89.函數(shù)的定義域為
注意
90.
91.
92.
93.解
94.
95.
96.解
97.
98.y=x2(x≥0),y=1及y軸圍成的平面圖形D如圖3—1所示.其面積為
99.
100.
101.∵y=xe-x
∴y"=e-x一xe-x=e-x(1一x)=0;x=1∴y""=一e-x(1一x)一e-x=e-x(x一2)=0;x=2①∵x<1時y">0;∴x>1時y"<0;
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版智能便利店技術(shù)授權(quán)及門店運營合同4篇
- 個人財務(wù)規(guī)劃服務(wù)合同2024
- 2025年水電設(shè)施智能化改造安裝合同4篇
- 二零二五版光盤復(fù)制與創(chuàng)意設(shè)計及制作合同3篇
- 三方協(xié)作2024年勞務(wù)分包協(xié)議模板版A版
- 2025版民爆物品安全評估與風(fēng)險管理合同模板4篇
- 2024通信工程智能化設(shè)備采購及安裝服務(wù)協(xié)議3篇
- 2025年度腳手架安裝與拆卸工程承包合同范本4篇
- 校園心理劇在學(xué)生群體中的運用
- 小學(xué)科學(xué)課程資源的創(chuàng)新利用與教育效果
- 2025年度房地產(chǎn)權(quán)證辦理委托代理合同典范3篇
- 柴油墊資合同模板
- 湖北省五市州2023-2024學(xué)年高一下學(xué)期期末聯(lián)考數(shù)學(xué)試題
- 城市作戰(zhàn)案例研究報告
- 【正版授權(quán)】 ISO 12803:1997 EN Representative sampling of plutonium nitrate solutions for determination of plutonium concentration
- 道德經(jīng)全文及注釋
- 2024中考考前地理沖刺卷及答案(含答題卡)
- 多子女贍養(yǎng)老人協(xié)議書范文
- 彩票市場銷售計劃書
- 支付行業(yè)反洗錢與反恐怖融資
- 基礎(chǔ)設(shè)施綠色施工技術(shù)研究
評論
0/150
提交評論