2022-2023學(xué)年湖北省鄂州市普通高校對(duì)口單招高等數(shù)學(xué)一自考測試卷(含答案)_第1頁
2022-2023學(xué)年湖北省鄂州市普通高校對(duì)口單招高等數(shù)學(xué)一自考測試卷(含答案)_第2頁
2022-2023學(xué)年湖北省鄂州市普通高校對(duì)口單招高等數(shù)學(xué)一自考測試卷(含答案)_第3頁
2022-2023學(xué)年湖北省鄂州市普通高校對(duì)口單招高等數(shù)學(xué)一自考測試卷(含答案)_第4頁
2022-2023學(xué)年湖北省鄂州市普通高校對(duì)口單招高等數(shù)學(xué)一自考測試卷(含答案)_第5頁
已閱讀5頁,還剩33頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年湖北省鄂州市普通高校對(duì)口單招高等數(shù)學(xué)一自考測試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(50題)1.方程x2+y2-2z=0表示的二次曲面是.

A.柱面B.球面C.旋轉(zhuǎn)拋物面D.橢球面

2.A.0B.1C.∞D(zhuǎn).不存在但不是∞

3.

4.設(shè)z=ysinx,則等于().A.A.-cosxB.-ycosxC.cosxD.ycosx

5.

6.

7.

8.設(shè)f(x)為連續(xù)函數(shù),則等于().A.A.f(x)-f(a)B.f(a)-f(x)C.f(x)D.f(a)

9.A.f(x)+CB.f'(x)+CC.f(x)D.f'(x)

10.

11.()有助于同級(jí)部門或同級(jí)領(lǐng)導(dǎo)之間的溝通了解。

A.上行溝通B.下行溝通C.平行溝通D.分權(quán)

12.

13.

14.設(shè)f(x)在x=0處有二階連續(xù)導(dǎo)數(shù)

則x=0是f(x)的()。

A.間斷點(diǎn)B.極大值點(diǎn)C.極小值點(diǎn)D.拐點(diǎn)

15.

16.A.A.絕對(duì)收斂B.條件收斂C.發(fā)散D.收斂性與口有關(guān)17.f(x)在x=0有二階連續(xù)導(dǎo)數(shù),則f(x)在x=0處()。A.取極小值B.取極大值C.不取極值D.以上都不對(duì)

18.

19.

20.設(shè)x2是f(x)的一個(gè)原函數(shù),則f(x)=A.A.2x

B.x3

C.(1/3)x3+C

D.3x3+C

21.A.A.2/3B.3/2C.2D.3

22.按照盧因的觀點(diǎn),組織在“解凍”期間的中心任務(wù)是()

A.改變員工原有的觀念和態(tài)度B.運(yùn)用策略,減少對(duì)變革的抵制C.變革約束力、驅(qū)動(dòng)力的平衡D.保持新的組織形態(tài)的穩(wěn)定

23.

24.

25.圖示懸臂梁,若已知截面B的撓度和轉(zhuǎn)角分別為vB和θB,則C端撓度為()。

A.vC=2uB

B.uC=θBα

C.vC=uB+θBα

D.vC=vB

26.

27.微分方程y''-2y'=x的特解應(yīng)設(shè)為A.AxB.Ax+BC.Ax2+BxD.Ax2+Bx+C28.設(shè)f(x)在[0,1]上連續(xù),在(0,1)內(nèi)可導(dǎo),且f(0)=f(1),則在(0,1)內(nèi)曲線y=f(x)的所有切線中().A.A.至少有一條平行于x軸B.至少有一條平行于y軸C.沒有一條平行于x軸D.可能有一條平行于y軸

29.

30.如圖所示,在乎板和受拉螺栓之間墊上一個(gè)墊圈,可以提高()。

A.螺栓的拉伸強(qiáng)度B.螺栓的剪切強(qiáng)度C.螺栓的擠壓強(qiáng)度D.平板的擠壓強(qiáng)度

31.

32.

33.

34.

35.微分方程y’-4y=0的特征根為()A.0,4B.-2,2C.-2,4D.2,436.

設(shè)f(x)=1+x,則f(x)等于()。A.1

B.

C.

D.

37.

38.

39.

等于().

40.

41.

A.僅有水平漸近線

B.既有水平漸近線,又有鉛直漸近線

C.僅有鉛直漸近線

D.既無水平漸近線,又無鉛直漸近線

42.

43.設(shè)Y=x2-2x+a,貝0點(diǎn)x=1()。A.為y的極大值點(diǎn)B.為y的極小值點(diǎn)C.不為y的極值點(diǎn)D.是否為y的極值點(diǎn)與a有關(guān)

44.已知

=()。

A.

B.

C.

D.

45.設(shè)有直線當(dāng)直線l1與l2平行時(shí),λ等于().

A.1B.0C.-1/2D.-146.函數(shù)y=sinx在區(qū)間[0,π]上滿足羅爾定理的ξ等于()。A.0

B.

C.

D.π

47.

48.函數(shù)y=ex+e-x的單調(diào)增加區(qū)間是

A.(-∞,+∞)B.(-∞,0]C.(-1,1)D.[0,+∞)

49.當(dāng)x→0時(shí),x2是x-ln(1+x)的().

A.較高階的無窮小B.等價(jià)無窮小C.同階但不等價(jià)無窮小D.較低階的無窮小50.過點(diǎn)(1,0,O),(0,1,O),(0,0,1)的平面方程為()A.A.x+y+z=1

B.2x+y+z=1

C.x+2y+z=1

D.x+y+2z=1

二、填空題(20題)51.52.過點(diǎn)M0(2,0,-1)且平行于的直線方程為______.53.微分方程y"+y'=0的通解為______.

54.

55.

56.

57.

58.59.

60.

61.

62.

63.

64.∫e-3xdx=__________。

65.

66.

67.

68.

則F(O)=_________.

69.

70.

三、計(jì)算題(20題)71.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.72.求微分方程的通解.73.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.74.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.75.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.76.77.證明:78.79.

80.求微分方程y"-4y'+4y=e-2x的通解.

81.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

82.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則

83.

84.求曲線在點(diǎn)(1,3)處的切線方程.85.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).86.將f(x)=e-2X展開為x的冪級(jí)數(shù).

87.

88.

89.90.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

四、解答題(10題)91.

確定a,b使得f(x)在x=0可導(dǎo)。

92.

93.求直線y=2x+1與直線x=0,x=1和y=0所圍平面圖形的面積,并求該圖形繞x軸旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積。94.95.96.97.將展開為x的冪級(jí)數(shù).98.

99.

100.五、高等數(shù)學(xué)(0題)101.

=_______.

六、解答題(0題)102.

參考答案

1.C本題考查了二次曲面的知識(shí)點(diǎn)。x2+y2-2z=0可化為x2/2+y2/2=z,故表示的是旋轉(zhuǎn)拋物面。

2.D本題考查了函數(shù)的極限的知識(shí)點(diǎn)。

3.A

4.C本題考查的知識(shí)點(diǎn)為高階偏導(dǎo)數(shù).

由于z=ysinx,因此

可知應(yīng)選C.

5.B解析:

6.D

7.B

8.C本題考查的知識(shí)點(diǎn)為可變限積分求導(dǎo).

由于當(dāng)f(x)連續(xù)時(shí),,可知應(yīng)選C.

9.C

10.A

11.C解析:平行溝通有助于同級(jí)部門或同級(jí)領(lǐng)導(dǎo)之間的溝通了解。

12.A

13.C

14.C則x=0是f(x)的極小值點(diǎn)。

15.A

16.A

17.B;又∵分母x→0∴x=0是駐點(diǎn);;即f""(0)=一1<0,∴f(x)在x=0處取極大值

18.A

19.C

20.A由于x2為f(x)的一個(gè)原函數(shù),由原函數(shù)的定義可知f(x)=(x2)'=2x,故選A。

21.A

22.A解析:組織在解凍期間的中心任務(wù)是改變員工原有的觀念和態(tài)度。

23.C

24.B

25.C

26.C

27.C因f(x)=x為一次函數(shù),且特征方程為r2-2r=0,得特征根為r1=0,r2=2.于是特解應(yīng)設(shè)為y*=(Ax+B)x=Ax2+Bx.

28.A本題考查的知識(shí)點(diǎn)有兩個(gè):羅爾中值定理;導(dǎo)數(shù)的幾何意義.

由題設(shè)條件可知f(x)在[0,1]上滿足羅爾中值定理,因此至少存在一點(diǎn)ξ∈(0,1),使f'(ξ)=0.這表明曲線y=f(x)在點(diǎn)(ξ,f(ξ))處的切線必定平行于x軸,可知A正確,C不正確.

如果曲線y=f(x)在點(diǎn)(ξ,f(ξ))處的切線平行于y軸,其中ξ∈(0,1),這條切線的斜率為∞,這表明f'(ξ)=∞為無窮大,此時(shí)說明f(x)在點(diǎn)x=ξ不可導(dǎo).因此可知B,D都不正確.

本題對(duì)照幾何圖形易于找出解答,只需依題設(shè)條件,畫出一條曲線,則可以知道應(yīng)該選A.

有些考生選B,D,這是由于不明確導(dǎo)數(shù)的幾何意義而導(dǎo)致的錯(cuò)誤.

29.B

30.D

31.C

32.A

33.C解析:

34.B

35.B由r2-4=0,r1=2,r2=-2,知y"-4y=0的特征根為2,-2,故選B.

36.C本題考查的知識(shí)點(diǎn)為不定積分的性質(zhì)??芍獞?yīng)選C。

37.D解析:

38.A

39.D解析:本題考查的知識(shí)點(diǎn)為牛頓一萊布尼茨公式和定積分的換元法.

因此選D.

40.C解析:

41.A

42.D

43.B本題考查的知識(shí)點(diǎn)為一元函數(shù)的極值。求解的一般步驟為:先求出函數(shù)的一階導(dǎo)數(shù),令偏導(dǎo)數(shù)等于零,確定函數(shù)的駐點(diǎn).再依極值的充分條件來判定所求駐點(diǎn)是否為極值點(diǎn)。由于y=x2-2x+a,可由y'=2x-2=0,解得y有唯一駐點(diǎn)x=1.又由于y"=2,可得知y"|x=1=2>0。由極值的充分條件可知x=1為y的極小值點(diǎn),故應(yīng)選B。如果利用配方法,可得y=(x-1)2+a-1≥a-1,且y|x=1=a-1,由極值的定義可知x=1為y的極小值點(diǎn),因此選B。

44.A

45.C解析:

46.C本題考查的知識(shí)點(diǎn)為羅爾定理的條件與結(jié)論。

47.D解析:

48.D考查了函數(shù)的單調(diào)區(qū)間的知識(shí)點(diǎn).

y=ex+e-x,則y'=ex-e-x,當(dāng)x>0時(shí),y'>0,所以y在區(qū)間[0,+∞)上單調(diào)遞增。

49.C解析:本題考查的知識(shí)點(diǎn)為無窮小階的比較.

由于

可知當(dāng)x→0時(shí),x2與x-ln(1+x)為同階但不等價(jià)無窮小.故應(yīng)選C.

50.A

51.

52.53.y=C1+C2e-x,其中C1,C2為任意常數(shù)本題考查的知識(shí)點(diǎn)為二階線性常系數(shù)齊次微分方程的求解.

二階線性常系數(shù)齊次微分方程求解的一般步驟為:先寫出特征方程,求出特征根,再寫出方程的通解.

微分方程為y"+y'=0.

特征方程為r3+r=0.

特征根r1=0.r2=-1.

因此所給微分方程的通解為

y=C1+C2e-x,

其牛C1,C2為任意常數(shù).

54.

55.

解析:

56.

57.58.0.

本題考查的知識(shí)點(diǎn)為冪級(jí)數(shù)的收斂半徑.

所給冪級(jí)數(shù)為不缺項(xiàng)情形

因此收斂半徑為0.59.

60.

解析:

61.11解析:

62.

本題考查的知識(shí)點(diǎn)為極限的運(yùn)算.

若利用極限公式

如果利用無窮大量與無窮小量關(guān)系,直接推導(dǎo),可得

63.

64.-(1/3)e-3x+C

65.

66.

解析:67.1.

本題考查的知識(shí)點(diǎn)為函數(shù)連續(xù)性的概念.

68.69.2本題考查的知識(shí)點(diǎn)為二階導(dǎo)數(shù)的運(yùn)算.

f'(x)=(x2)'=2x,

f"(x)=(2x)'=2.

70.(-22)(-2,2)解析:

71.

72.73.函數(shù)的定義域?yàn)?/p>

注意

74.由二重積分物理意義知

75.

76.

77.

78.

79.由一階線性微分方程通解公式有

80.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

81.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%82.由等價(jià)無窮小量的定義可知

83.

84.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

85.

列表:

說明

86.

87.

88.

89.

90.

91.

①f(0)=1;f-=(0)=1;+(0)=a+b;∵可導(dǎo)一定連續(xù)∴a+b=1②

∵可導(dǎo)f-"(x)=f+"(x)∴b=-4∴a=5①f(0)=1;f-=(0)=1;+(0)=a+b;∵可導(dǎo)一定

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論