2022年云南省麗江市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第1頁
2022年云南省麗江市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第2頁
2022年云南省麗江市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第3頁
2022年云南省麗江市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第4頁
2022年云南省麗江市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第5頁
已閱讀5頁,還剩24頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022年云南省麗江市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)學(xué)校:________班級:________姓名:________考號:________

一、單選題(20題)1.

A.

B.1

C.2

D.+∞

2.A.3B.2C.1D.0

3.

4.當(dāng)x→0時,3x是x的().

A.高階無窮小量B.等價無窮小量C.同階無窮小量,但不是等價無窮小量D.低階無窮小量

5.由曲線,直線y=x,x=2所圍面積為

A.

B.

C.

D.

6.

7.

8.

9.

10.

11.

12.

13.

A.2B.1C.1/2D.0

14.為了提高混凝土的抗拉強度,可在梁中配置鋼筋。若矩形截面梁的彎矩圖如圖所示,梁中鋼筋(圖中虛線所示)配置最為合理的是()。

A.

B.

C.

D.

15.

16.

17.

18.

19.設(shè)y=5x,則y'=A.A.5xln5

B.5x/ln5

C.x5x-1

D.5xlnx

20.曲線y=1nx在點(e,1)處切線的斜率為().A.A.e2

B.eC.1D.1/e二、填空題(20題)21.

22.23.24.

25.

26.

27.設(shè)y=sinx2,則dy=______.28.設(shè)y=sin2x,則dy=______.

29.

30.

31.

32.設(shè),則y'=________。

33.

34.設(shè)曲線y=f(x)在點(1,f(1))處的切線平行于x軸,則該切線方程為______.

35.

36.

37.

38.

39.

40.設(shè)z=sin(y+x2),則.三、計算題(20題)41.求曲線在點(1,3)處的切線方程.42.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.

43.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?

44.

45.求微分方程的通解.

46.求微分方程y"-4y'+4y=e-2x的通解.

47.48.

49.將f(x)=e-2X展開為x的冪級數(shù).50.

51.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.52.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為

S(x).

(1)寫出S(x)的表達式;

(2)求S(x)的最大值.

53.證明:54.55.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.56.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.

57.

58.59.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則60.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.四、解答題(10題)61.

62.計算,其中區(qū)域D滿足x2+y2≤1,x≥0,y≥0.

63.

64.

65.66.

67.

68.

69.

70.五、高等數(shù)學(xué)(0題)71.

的極大值是_________;極小值是________。

六、解答題(0題)72.

參考答案

1.C

2.A

3.B

4.C本題考查的知識點為無窮小量階的比較.

應(yīng)依定義考察

由此可知,當(dāng)x→0時,3x是x的同階無窮小量,但不是等價無窮小量,故知應(yīng)選C.

本題應(yīng)明確的是:考察當(dāng)x→x0時無窮小量β與無窮小量α的階的關(guān)系時,要判定極限

這里是以α為“基本量”,考生要特別注意此點,才能避免錯誤.

5.B

6.C

7.B

8.B

9.C

10.B

11.B

12.D解析:

13.D本題考查的知識點為重要極限公式與無窮小量的性質(zhì).

14.D

15.A

16.B

17.C

18.A

19.A由導(dǎo)數(shù)公式可知(5x)'=5xln5,故選A。

20.D本題考查的知識點為導(dǎo)數(shù)的幾何意義.

由導(dǎo)數(shù)的幾何意義可知,若y=f(x)在點x0處可導(dǎo),則曲線),y=f(x)在點(x0,f(x0))處必定存在切線,且切線的斜率為f(x0).

由于y=lnx,可知可知應(yīng)選D.

21.(-35)(-3,5)解析:22.

本題考查的知識點為二階線性常系數(shù)齊次微分方程的求解.

二階線性常系數(shù)齊次微分方程求解的-般步驟為:先寫出特征方程,求出特征根,再寫出方程的通解.

23.

24.

25.22解析:

26.-227.2xcosx2dx本題考查的知識點為一元函數(shù)的微分.

由于y=sinx2,y'=cosx2·(x2)'=2xcosx2,故dy=y'dx=2xcosx2dx.28.2cos2xdx這類問題通常有兩種解法.

解法1利用公式dy=y'dx,先求y',由于y'=cos2x·(2x)'2cos2x,

因此dy=2cos2xdx.

解法2利用微分運算公式

dy=d(sin2x)=cos2x·d(2x)=2cos2xdx.

29.30.本題考查的知識點為二重積分的直角坐標(biāo)與極坐標(biāo)轉(zhuǎn)化問題。

31.

32.

33.1/x34.y=f(1)本題考查的知識點有兩個:一是導(dǎo)數(shù)的幾何意義,二是求切線方程.

設(shè)切點為(x0,f(x0)),則曲線y=f(x)過該點的切線方程為

y-f(x0)=f'(x0)(x-x0).

由題意可知x0=1,且在(1,f(1))處曲線y=f(x)的切線平行于x軸,因此應(yīng)有f'(x0)=0,故所求切線方程為

y=f(1)=0.

本題中考生最常見的錯誤為:將曲線y=f(x)在點(x0,f(x0))處的切線方程寫為

y-f(x0)=f'(x)(x-x0)

而導(dǎo)致錯誤.本例中錯誤地寫為

y-f(1)=f'(x)(x-1).

本例中由于f(x)為抽象函數(shù),一些考生不習(xí)慣于寫f(1),有些人誤寫切線方程為

y-1=0.

35.1/(1-x)2

36.

37.

38.1本題考查了冪級數(shù)的收斂半徑的知識點。

39.22解析:40.2xcos(y+x2)本題考查的知識點為二元函數(shù)的偏導(dǎo)數(shù)計算.

可以令u=y+x2,得z=sinu,由復(fù)合函數(shù)偏導(dǎo)數(shù)的鏈?zhǔn)椒▌t得

41.曲線方程為,點(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

42.

43.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時,價格上漲1%需求量減少2.5%

44.

45.

46.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,

47.48.由一階線性微分方程通解公式有

49.

50.

51.由二重積分物理意義知

52.

53.

54.

55.

56.函數(shù)的定義域為

注意

57.

58.

59.由等價無窮小量的定義可知

60.

列表:

說明

61.特征方程為

r2—2r-8=0.

特征根為r1=-2,r2=4.

62.積分區(qū)域D如圖2-1所示.

解法1利用極坐標(biāo)系.D可以表示為:

解法2利用直角坐標(biāo)系.D可以表示為:

本題考查的知識點為計算二重積分;選擇積分次序或利用極坐標(biāo)計算.

63.

64.

65.

66.

67.68.解法1原式(兩次利用洛必達法則)解法2原式(利用等價無窮小代換)本題考查的知識點為用洛必達法則求極限.

由于問題為“∞-∞”型極限問題,應(yīng)先將求極限的函數(shù)通分,使所求極限化為“”型問題.

如果將上式右端直接利用洛必達法則求之,則運算復(fù)雜.注意到使用洛必達法則求極限時,如果能與等價無窮小代換相結(jié)合,則問題常能得到簡化,由于當(dāng)x→0時,sin

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論