版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年安徽省安慶市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.設(shè)函數(shù)y=f(x)的導(dǎo)函數(shù),滿(mǎn)足f'(-1)=0,當(dāng)x<-1時(shí),f'(x)<0;x>-1時(shí),f'(x)>0.則下列結(jié)論肯定正確的是().A.A.x=-1是駐點(diǎn),但不是極值點(diǎn)B.x=-1不是駐點(diǎn)C.x=-1為極小值點(diǎn)D.x=-1為極大值點(diǎn)
2.()。A.
B.
C.
D.
3.A.e-1dx
B.-e-1dx
C.(1+e-1)dx
D.(1-e-1)dx
4.一飛機(jī)做直線(xiàn)水平運(yùn)動(dòng),如圖所示,已知飛機(jī)的重力為G,阻力Fn,俯仰力偶矩M和飛機(jī)尺寸a、b和d,則飛機(jī)的升力F1為()。
A.(M+Ga+FDb)/d
B.G+(M+Ga+FDb)/d
C.G一(M+Gn+FDb)/d
D.(M+Ga+FDb)/d—G
5.設(shè)f(x)的一個(gè)原函數(shù)為x2,則f'(x)等于().
A.
B.x2
C.2x
D.2
6.曲線(xiàn)y=x-ex在點(diǎn)(0,-1)處切線(xiàn)的斜率k=A.A.2B.1C.0D.-1
7.
8.設(shè)f(x)=e-2x,則f'(x)=()。A.-e-2x
B.e-2x
C.-(1/2)e-2x
D.-2e-2x
9.設(shè)f(x)為連續(xù)的奇函數(shù),則等于().A.A.2af(x)
B.
C.0
D.f(a)-f(-a)
10.
A.
B.
C.
D.
11.微分方程y'+y=0的通解為()。A.y=ex
B.y=e-x
C.y=Cex
D.y=Ce-x
12.A.I1=I2
B.I1>I2
C.I1<I2
D.無(wú)法比較
13.設(shè)f(x)為連續(xù)函數(shù),則()'等于().A.A.f(t)B.f(t)-f(a)C.f(x)D.f(x)-f(a)
14.A.絕對(duì)收斂B.條件收斂C.發(fā)散D.無(wú)法確定斂散性
15.
16.設(shè)函數(shù)f(x)在區(qū)間[0,1]上可導(dǎo),且f(x)>0,則()
A.f(1)>f(0)B.f(1)<f(0)C.f(1)=f(0)D.f(1)與f(0)的值不能比較
17.A.A.2
B.1
C.1/2e
D.
18.設(shè)lnx是f(x)的一個(gè)原函數(shù),則f'(x)=A.-1/x
B.1/x
C.-1/x2
D.1/x2
19.
20.A.A.f(2)-f(0)
B.
C.
D.f(1)-f(0)
二、填空題(20題)21.
22.
23.________.
24.
25.方程cosxsinydx+sinxcosydy=O的通解為_(kāi)_____.
26.已知平面π:2x+y-3z+2=0,則過(guò)原點(diǎn)且與π垂直的直線(xiàn)方程為_(kāi)_____.
27.
28.直線(xiàn)的方向向量為_(kāi)_______。
29.
30.
31.
32.曲線(xiàn)y=x3—6x的拐點(diǎn)坐標(biāo)為_(kāi)_______.
33.
34.
35.過(guò)點(diǎn)M0(1,-2,0)且與直線(xiàn)垂直的平面方程為_(kāi)_____.
36.
37.
38.設(shè)y=sin(2+x),則dy=.
39.
40.
三、計(jì)算題(20題)41.求曲線(xiàn)在點(diǎn)(1,3)處的切線(xiàn)方程.
42.
43.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線(xiàn)的凹凸區(qū)間和拐點(diǎn).
44.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).
45.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則
46.求微分方程y"-4y'+4y=e-2x的通解.
47.設(shè)拋物線(xiàn)Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線(xiàn)與x軸所圍成的平面區(qū)域內(nèi),以線(xiàn)段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫(xiě)出S(x)的表達(dá)式;
(2)求S(x)的最大值.
48.
49.
50.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
51.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.
52.
53.
54.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
55.求微分方程的通解.
56.證明:
57.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
58.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線(xiàn)在點(diǎn)(1,1)處的切線(xiàn)l的方程.
59.
60.
四、解答題(10題)61.
62.
63.
64.
65.
66.設(shè)z=z(x,y)由ez-xyz=1所確定,求全微分dz。
67.
68.
69.
70.
五、高等數(shù)學(xué)(0題)71.x=f(x,y)由x2+y2+z2=1確定,求zx,zy。
六、解答題(0題)72.求微分方程y+y-2y=0的通解.
參考答案
1.C本題考查的知識(shí)點(diǎn)為極值的第一充分條件.
由f'(-1)=0,可知x=-1為f(x)的駐點(diǎn),當(dāng)x<-1時(shí),f'(x)<0;當(dāng)x>-1時(shí),f'(x)>1,由極值的第一充分條件可知x=-1為f(x)的極小值點(diǎn),故應(yīng)選C.
2.A
3.D本題考查了函數(shù)的微分的知識(shí)點(diǎn)。
4.B
5.D解析:本題考查的知識(shí)點(diǎn)為原函數(shù)的概念.
由于x2為f(x)的原函數(shù),因此
f(x)=(x2)'=2x,
因此
f'(x)=2.
可知應(yīng)選D.
6.C
7.C
8.D
9.C本題考查的知識(shí)點(diǎn)為定積分的對(duì)稱(chēng)性.
由定積分的對(duì)稱(chēng)性質(zhì)可知:若f(x)為[-a,a]上的連續(xù)的奇函數(shù),則
可知應(yīng)選C.
10.B本題考查的知識(shí)點(diǎn)為交換二次積分次序。由所給二次積分可知積分區(qū)域D可以表示為1≤y≤2,y≤x≤2,交換積分次序后,D可以表示為1≤x≤2,1≤y≤x,故應(yīng)選B。
11.D可以將方程認(rèn)作可分離變量方程;也可以將方程認(rèn)作一階線(xiàn)性微分方程;還可以仿二階線(xiàn)性常系數(shù)齊次微分方程,并作為特例求解。解法1將方程認(rèn)作可分離變量方程。分離變量
兩端分別積分
或y=Ce-x解法2將方程認(rèn)作一階線(xiàn)性微分方程.由通解公式可得解法3認(rèn)作二階常系數(shù)線(xiàn)性齊次微分方程特例求解:特征方程為r+1=0,特征根為r=-1,方程通解為y=Ce-x。
12.C因積分區(qū)域D是以點(diǎn)(2,1)為圓心的一單位圓,且它位于直線(xiàn)x+y=1的上方,即在D內(nèi)恒有x+y>1,所以(x+y)2<(x+y)3.所以有I1<I2.
13.C本題考查的知識(shí)點(diǎn)為可變上限積分的求導(dǎo)性質(zhì).
這是一個(gè)基本性質(zhì):若f(x)為連續(xù)函數(shù),則必定可導(dǎo),且
本題常見(jiàn)的錯(cuò)誤是選D,這是由于考生將積分的性質(zhì)與牛頓-萊布尼茨公式混在了一起而引起的錯(cuò)誤.
14.A
15.A解析:
16.A由f"(x)>0說(shuō)明f(x)在[0,1]上是增函數(shù),因?yàn)?>0,所以f(1)>f(0)。故選A。
17.B
18.C
19.A
20.C本題考查的知識(shí)點(diǎn)為牛頓一萊布尼茨公式和不定積分的性質(zhì).
可知應(yīng)選C.
21.1/6
本題考查的知識(shí)點(diǎn)為計(jì)算二重積分.
22.
23.
24.x/1=y/2=z/-1
25.sinx·siny=C由cosxsinydx+sinxcosydy=0,知sinydsinx+sinxdsiny=0,即d(sinx·siny)=0,兩邊積分得sinx·siny=C,這就是方程的通解.
26.
解析:本題考查的知識(shí)點(diǎn)為直線(xiàn)方程和直線(xiàn)與平面的關(guān)系.
由于平面π與直線(xiàn)l垂直,則直線(xiàn)的方向向量s必定平行于平面的法向量n,因此可以取s=n=(2,1,-3).又知直線(xiàn)過(guò)原點(diǎn)-由直線(xiàn)的標(biāo)準(zhǔn)式方程可知為所求直線(xiàn)方程.
27.0
28.直線(xiàn)l的方向向量為
29.
本題考查的知識(shí)點(diǎn)為冪級(jí)數(shù)的收斂半徑.
注意此處冪級(jí)數(shù)為缺項(xiàng)情形.
30.
31.
解析:
32.(0,0).
本題考查的知識(shí)點(diǎn)為求曲線(xiàn)的拐點(diǎn).
依求曲線(xiàn)拐點(diǎn)的-般步驟,只需
33.
34.3
35.3(x-1)-(y+2)+z=0(或3x-y+z=5)本題考查的知識(shí)點(diǎn)為平面與直線(xiàn)的方程.
由題設(shè)條件可知應(yīng)該利用點(diǎn)法式方程來(lái)確定所求平面方程.
所給直線(xiàn)l的方向向量s=(3,-1,1).若所求平面π垂直于直線(xiàn)l,則平面π的法向量n∥s,不妨取n=s=(3,-1,1).則由平面的點(diǎn)法式方程可知
3(x-1)-[y-(-2)]+(z-0)=0,
即3(x-1)-(y+2)+z=0
為所求平面方程.
或?qū)憺?x-y+z-5=0.
上述兩個(gè)結(jié)果都正確,前者3(x-1)-(y+2)z=0稱(chēng)為平面的點(diǎn)法式方程,而后者3x-y+z-5=0稱(chēng)為平面的一般式方程.
36.-2/π本題考查了對(duì)由參數(shù)方程確定的函數(shù)求導(dǎo)的知識(shí)點(diǎn).
37.
解析:
38.cos(2+x)dx
這類(lèi)問(wèn)題通常有兩種解法.
解法1
因此dy=cos(2+x)dx.
解法2利用微分運(yùn)算公式
dy=d(sin(2+x))=cos(2+x)·d(2+x)=cos(2+x)dx.
39.1.
本題考查的知識(shí)點(diǎn)為反常積分,應(yīng)依反常積分定義求解.
40.
解析:
41.曲線(xiàn)方程為,點(diǎn)(1,3)在曲線(xiàn)上.
因此所求曲線(xiàn)方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線(xiàn)y=f(x)在點(diǎn)
(x0,fx0))處存在切線(xiàn),且切線(xiàn)的斜率為f′(x0).切線(xiàn)方程為
42.
43.
列表:
說(shuō)明
44.
45.由等價(jià)無(wú)窮小量的定義可知
46.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
47.
48.
則
49.
50.由二重積分物理意義知
51.
52.由一階線(xiàn)性微分方程通解公式有
53.
54.函數(shù)的定義域?yàn)?/p>
注意
55.
56.
57.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東省湛江市坡頭區(qū)2023-2024學(xué)年七年級(jí)上學(xué)期期末考試數(shù)學(xué)試卷(含答案)
- 養(yǎng)老院老人生活照顧人員福利待遇制度
- 養(yǎng)老院老人健康監(jiān)測(cè)人員考核獎(jiǎng)懲制度
- 2024年土地儲(chǔ)備與供應(yīng)股權(quán)合作開(kāi)發(fā)合同3篇
- 拖欠廠(chǎng)房租協(xié)議書(shū)
- 2025年慶陽(yáng)貨運(yùn)考試題目
- 2024年新型內(nèi)墻膩?zhàn)油苛鲜┕ず献鲄f(xié)議3篇
- 2025年日照貨運(yùn)上崗證考試題庫(kù)1387題
- 2024年版:解除品牌授權(quán)協(xié)議書(shū)3篇
- 2025年池州普通貨運(yùn)從業(yè)資格證考試
- 讀了蕭平實(shí)導(dǎo)師的《念佛三昧修學(xué)次第》才知道原來(lái)念佛門(mén)中有微妙法
- 周邊傳動(dòng)濃縮刮泥機(jī)檢驗(yàn)報(bào)告(ZBG型)(完整版)
- 紙箱理論抗壓強(qiáng)度、邊壓強(qiáng)度、耐破強(qiáng)度的計(jì)算
- 土地增值稅清算審核指南
- 死亡通知書(shū)模板
- 鷸蚌相爭(zhēng)課件
- PMC(計(jì)劃物控)面試經(jīng)典筆試試卷及答案
- 失業(yè)保險(xiǎn)金申領(lǐng)表_11979
- 《質(zhì)量管理體系文件》風(fēng)險(xiǎn)和機(jī)遇評(píng)估分析表
- 食品安全約談通知書(shū)
- 舒爾特方格A4直接打印版
評(píng)論
0/150
提交評(píng)論