![2022年廣東省汕頭市成考專升本高等數(shù)學(xué)一自考真題(含答案)_第1頁(yè)](http://file4.renrendoc.com/view/ce5c3c12c17192845d24d4a5f83b83d4/ce5c3c12c17192845d24d4a5f83b83d41.gif)
![2022年廣東省汕頭市成考專升本高等數(shù)學(xué)一自考真題(含答案)_第2頁(yè)](http://file4.renrendoc.com/view/ce5c3c12c17192845d24d4a5f83b83d4/ce5c3c12c17192845d24d4a5f83b83d42.gif)
![2022年廣東省汕頭市成考專升本高等數(shù)學(xué)一自考真題(含答案)_第3頁(yè)](http://file4.renrendoc.com/view/ce5c3c12c17192845d24d4a5f83b83d4/ce5c3c12c17192845d24d4a5f83b83d43.gif)
![2022年廣東省汕頭市成考專升本高等數(shù)學(xué)一自考真題(含答案)_第4頁(yè)](http://file4.renrendoc.com/view/ce5c3c12c17192845d24d4a5f83b83d4/ce5c3c12c17192845d24d4a5f83b83d44.gif)
![2022年廣東省汕頭市成考專升本高等數(shù)學(xué)一自考真題(含答案)_第5頁(yè)](http://file4.renrendoc.com/view/ce5c3c12c17192845d24d4a5f83b83d4/ce5c3c12c17192845d24d4a5f83b83d45.gif)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022年廣東省汕頭市成考專升本高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________一、單選題(50題)1.
2.A.A.2B.-1/2C.1/2eD.(1/2)e1/2
3.
A.
B.1
C.2
D.+∞
4.設(shè)y=e-3x,則dy=A.e-3xdx
B.-e-3xdx
C.-3e-3xdx
D.3e-3xdx
5.
A.6xarctanx2
B.6xtanx2+5
C.5
D.6xcos2x
6.
A.2x+1B.2xy+1C.x2+1D.2xy7.設(shè)函數(shù)在x=0處連續(xù),則a等于().A.A.0B.1/2C.1D.2
8.
9.設(shè)y1,y2為二階線性常系數(shù)微分方程y"+p1y+p2y=0的兩個(gè)特解,則C1y1+C2y2()A.為所給方程的解,但不是通解B.為所給方程的解,但不一定是通解C.為所給方程的通解D.不為所給方程的解10.A.A.1
B.
C.m
D.m2
11.A.(2+X)^2B.3(2+X)^2C.(2+X)^4D.3(2+X)^4
12.函數(shù)y=f(x)在(a,b)內(nèi)二階可導(dǎo),且f'(x)>0,f"(x)<0,則曲線y=f(x)在(a,b)內(nèi)().
A.單調(diào)增加且為凹B.單調(diào)增加且為凸C.單調(diào)減少且為凹D.單調(diào)減少且為凸
13.談判是雙方或多方為實(shí)現(xiàn)某種目標(biāo)就有關(guān)條件()的過(guò)程。
A.達(dá)成協(xié)議B.爭(zhēng)取利益C.避免沖突D.不斷協(xié)商
14.
15.
16.A.A.
B.0
C.
D.1
17.
18.
19.
20.
21.
A.
B.
C.
D.
22.A.A.3yx3y-1
B.yx3y-1
C.x3ylnx
D.3x3ylnx
23.
24.
25.
26.下列關(guān)系正確的是()。A.
B.
C.
D.
27.
28.
A.(-2,2)
B.(-∞,0)
C.(0,+∞)
D.(-∞,+∞)
29.
30.
31.
32.微分方程y"+y'=0的通解為
A.y=Ce-x
B.y=e-x+C
C.y=C1e-x+C2
D.y=e-x
33.
34.A.A.
B.
C.
D.
35.若在(a,b)內(nèi)f'(x)<0,f''(x)<0,則f(x)在(a,b)內(nèi)()。A.單減,凸B.單增,凹C.單減,凹D.單增,凸36.當(dāng)x→0時(shí),sinx是sinx的等價(jià)無(wú)窮小量,則k=()A.0B.1C.2D.337.A.A.
B.
C.
D.
38.A.A.>0B.<0C.=0D.不存在
39.設(shè)f(x)在點(diǎn)x0處取得極值,則()
A.f"(x0)不存在或f"(x0)=0
B.f"(x0)必定不存在
C.f"(x0)必定存在且f"(x0)=0
D.f"(x0)必定存在,不一定為零
40.
41.設(shè)函數(shù)在x=0處連續(xù),則等于()。A.2B.1/2C.1D.-2
42.在空間直角坐標(biāo)系中方程y2=x表示的是
A.拋物線B.柱面C.橢球面D.平面43.44.如圖所示兩楔形塊A、B自重不計(jì),二者接觸面光滑,受大小相等、方向相反且沿同一直線的兩個(gè)力的作用,則()。
A.A平衡,B不平衡B.A不平衡,B平衡C.A、B均不平衡D.A、B均平衡
45.下列()不是組織文化的特征。
A.超個(gè)體的獨(dú)特性B.不穩(wěn)定性C.融合繼承性D.發(fā)展性
46.
A.x=-2B.x=2C.y=1D.y=-247.函數(shù)y=x2-x+1在區(qū)間[-1,3]上滿足拉格朗日中值定理的ξ=A.A.-3/4B.0C.3/4D.1
48.
49.
50.
二、填空題(20題)51.
52.
53.
54.設(shè)區(qū)域D:0≤x≤1,1≤y≤2,則
55.
56.
57.
58.二元函數(shù)z=xy2+arcsiny2,則=______.
59.
60.
61.
62.
63.
64.
65.
66.
67.設(shè)y=e3x知,則y'_______。
68.
69.
70.
三、計(jì)算題(20題)71.求微分方程y"-4y'+4y=e-2x的通解.
72.
73.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.
74.
75.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
76.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
77.
78.求曲線在點(diǎn)(1,3)處的切線方程.
79.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
80.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
81.
82.將f(x)=e-2X展開為x的冪級(jí)數(shù).
83.
84.
85.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).
86.
87.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則
88.求微分方程的通解.
89.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.
90.證明:
四、解答題(10題)91.
92.
93.計(jì)算,其中D是由y=x,y=2,x=2與x=4圍成.
94.
95.
96.
97.
98.求,其中區(qū)域D是由曲線y=1+x2與y=0,x=0,x=1所圍成.
99.求y"-2y'-8y=0的通解.
100.設(shè)
五、高等數(shù)學(xué)(0題)101.求
六、解答題(0題)102.
參考答案
1.B
2.B
3.C
4.C
5.C
6.B
7.C本題考查的知識(shí)點(diǎn)為函數(shù)連續(xù)性的概念.
由函數(shù)連續(xù)性的定義可知,若f(x)在x=0處連續(xù),則有,由題設(shè)f(0)=a,
可知應(yīng)有a=1,故應(yīng)選C.
8.B
9.B如果y1,y2這兩個(gè)特解是線性無(wú)關(guān)的,即≠C,則C1y1+C2y2是其方程的通解?,F(xiàn)在題設(shè)中沒(méi)有指出是否線性無(wú)關(guān),所以可能是通解,也可能不是通解,故選B。
10.D本題考查的知識(shí)點(diǎn)為重要極限公式或等價(jià)無(wú)窮小量代換.
解法1
解法2
11.B
12.B解析:本題考查的知識(shí)點(diǎn)為利用一階導(dǎo)數(shù)符號(hào)判定函數(shù)的單調(diào)性和利用二階導(dǎo)數(shù)符號(hào)判定曲線的凹凸性.
由于在(a,b)內(nèi)f'(x)>0,可知f(x)在(a,b)內(nèi)單調(diào)增加,又由于f"(x)<0,可知曲線y=f(x)在(a,b)內(nèi)為凹,可知應(yīng)選B.
13.A解析:談判是指雙方或多方為實(shí)現(xiàn)某種目標(biāo)就有關(guān)條件達(dá)成協(xié)議的過(guò)程。
14.C
15.A解析:
16.D本題考查的知識(shí)點(diǎn)為拉格朗日中值定理的條件與結(jié)論.
可知應(yīng)選D.
17.B解析:
18.A解析:
19.C解析:
20.B解析:
21.D本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)運(yùn)算.
因此選D.
22.D
23.B
24.B
25.C解析:
26.C本題考查的知識(shí)點(diǎn)為不定積分的性質(zhì)。
27.C解析:
28.A
29.D
30.D
31.C
32.C解析:y"+y'=0,特征方程為r2+r=0,特征根為r1=0,r2=-1;方程的通解為y=C1e-x+C1,可知選C。
33.C
34.D
35.A∵f'(x)<0,f(x)單減;f''(x)<0,f(x)凸∴f(x)在(a,b)內(nèi)單減且凸。
36.B由等價(jià)無(wú)窮小量的概念,可知=1,從而k=1,故選B。也可以利用等價(jià)無(wú)窮小量的另一種表述形式,由于當(dāng)x→0時(shí),有sinx~x,由題設(shè)知當(dāng)x→0時(shí),kx~sinx,從而kx~x,可知k=1。
37.A
38.C被積函數(shù)sin5x為奇函數(shù),積分區(qū)間[-1,1]為對(duì)稱區(qū)間。由定積分的對(duì)稱性質(zhì)知選C。
39.A若點(diǎn)x0為f(x)的極值點(diǎn),可能為兩種情形之一:(1)若f(x)在點(diǎn)x0處可導(dǎo),由極值的必要條件可知f"(x0)=0;(2)如f(x)=|x|在點(diǎn)x=0處取得極小值,但f(x)=|x|在點(diǎn)x=0處不可導(dǎo),這表明在極值點(diǎn)處,函數(shù)可能不可導(dǎo)。故選A。
40.A
41.C本題考查的知識(shí)點(diǎn)為函數(shù)連續(xù)性的概念。由于f(x)在點(diǎn)x=0連續(xù),因此,故a=1,應(yīng)選C。
42.B解析:空間中曲線方程應(yīng)為方程組,故A不正確;三元一次方程表示空間平面,故D不正確;空間中,缺少一維坐標(biāo)的方程均表示柱面,可知應(yīng)選B。
43.C
44.C
45.B解析:組織文化的特征:(1)超個(gè)體的獨(dú)特性;(2)相對(duì)穩(wěn)定性;(3)融合繼承性;(4)發(fā)展性。
46.C解析:
47.D
48.D
49.D
50.C解析:
51.2x-4y+8z-7=0
52.
53.
54.本題考查的知識(shí)點(diǎn)為二重積分的計(jì)算。
如果利用二重積分的幾何意義,可知的值等于區(qū)域D的面積.由于D是長(zhǎng)、寬都為1的正形,可知其面積為1。因此
55.2xsinx2;本題考查的知識(shí)點(diǎn)為可變上限積分的求導(dǎo).
56.(12)(01)
57.1-m
58.y2
;本題考查的知識(shí)點(diǎn)為二元函數(shù)的偏導(dǎo)數(shù).
只需將y,arcsiny2認(rèn)作為常數(shù),則
59.xex(Asin2x+Bcos2x)由特征方程為r2-2r+5=0,得特征根為1±2i,而非齊次項(xiàng)為exsin2x,因此其特解應(yīng)設(shè)為y*=Axexsin2x+Bxexcos2x=xex(Asin2x+Bcos2x).
60.
61.
解析:
62.
63.
本題考查了一元函數(shù)的一階導(dǎo)數(shù)的知識(shí)點(diǎn)。
64.
65.
66.arctanx+C
67.3e3x
68.
69.π/4本題考查了定積分的知識(shí)點(diǎn)。
70.f(x)+Cf(x)+C解析:
71.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
72.
73.
74.
75.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
76.
77.
78.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
79.函數(shù)的定義域?yàn)?/p>
注意
80.由二重積分物理意義知
81.
82.
83.由一階線性微分方程通解公式有
84.
85.
列表:
說(shuō)明
86.
則
87.由等價(jià)無(wú)窮小量的定義可知
88.
89.
90.
91.
92.
93.積分區(qū)域D如下圖所示.被積函數(shù)f(x,y)=,化為二次積分時(shí)對(duì)哪個(gè)變量皆易于積分;但是區(qū)域D易于用X-型不等式表示,因此選擇先對(duì)y積分,后對(duì)x積分的二次積分次序.
94
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 深圳市出租房屋合同書(28篇)
- 湖南信息職業(yè)技術(shù)學(xué)院2024年單招考試職業(yè)技能測(cè)試E組樣題
- 設(shè)計(jì)方案優(yōu)化函
- 2025年信貸調(diào)整協(xié)商協(xié)議
- 2025年醫(yī)院合同管理策略與優(yōu)化措施
- 2025年互聯(lián)網(wǎng)電商員工保密協(xié)議規(guī)范
- 2025年獵頭項(xiàng)目立項(xiàng)申請(qǐng)報(bào)告模范
- 2025年二手住宅帶閣樓出售合同規(guī)范
- 2025年煙膠項(xiàng)目立項(xiàng)申請(qǐng)報(bào)告模稿
- 2025年二手房合同糾紛隱患與預(yù)防
- 2025年道路運(yùn)輸企業(yè)安全生產(chǎn)管理人員考試題(附答案)
- 建設(shè)工程質(zhì)量安全監(jiān)督人員考試題庫(kù)含答案
- 居間合同標(biāo)準(zhǔn)范本
- 2025年上半年山東人才發(fā)展集團(tuán)限公司社會(huì)招聘易考易錯(cuò)模擬試題(共500題)試卷后附參考答案
- 2025年上海民航職業(yè)技術(shù)學(xué)院高職單招職業(yè)適應(yīng)性測(cè)試近5年??及鎱⒖碱}庫(kù)含答案解析
- 2024年山東理工職業(yè)學(xué)院高職單招語(yǔ)文歷年參考題庫(kù)含答案解析
- 《生命與宗教》課件
- 《中華人民共和國(guó)學(xué)前教育法》專題培訓(xùn)
- 食品分析實(shí)驗(yàn)講義(1)
- 泥炭生化復(fù)合肥建設(shè)項(xiàng)目可行性研究報(bào)告
- 軟件公司K3渠道招募制度
評(píng)論
0/150
提交評(píng)論