版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022年廣東省茂名市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(20題)1.
2.
3.
4.
5.
6.A.A.arctanx2
B.2xarctanx
C.2xarctanx2
D.
7.
8.
9.A.0或1B.0或-1C.0或2D.1或-1
10.
11.
12.微分方程y''-7y'+12y=0的通解為()A.y=C1e3x+C2e-4x
B.y=C1e-3x+C2e4x
C.y=C1e3x+C2e4x
D.y=C1e-3x+C2e-4x
13.A.e-1dx
B.-e-1dx
C.(1+e-1)dx
D.(1-e-1)dx
14.A.I1=I2
B.I1>I2
C.I1<I2
D.無法比較
15.設(shè)直線,ι:x/0=y/2=z/1=z/1,則直線ιA.A.過原點且平行于x軸B.不過原點但平行于x軸C.過原點且垂直于x軸D.不過原點但垂直于x軸
16.
17.如圖所示,在半徑為R的鐵環(huán)上套一小環(huán)M,桿AB穿過小環(huán)M并勻速繞A點轉(zhuǎn)動,已知轉(zhuǎn)角φ=ωt(其中ω為一常數(shù),φ的單位為rad,t的單位為s),開始時AB桿處于水平位置,則當小環(huán)M運動到圖示位置時(以MO為坐標原點,小環(huán)Md運動方程為正方向建立自然坐標軸),下面說法不正確的一項是()。
A.小環(huán)M的運動方程為s=2Rωt
B.小環(huán)M的速度為
C.小環(huán)M的切向加速度為0
D.小環(huán)M的法向加速度為2Rω2
18.設(shè)y=cos4x,則dy=()。A.4sin4xdxB.-4sin4xdxC.(1/4)sin4xdxD.-(1/4)sin4xdx
19.
20.
二、填空題(20題)21.
22.
23.微分方程y+9y=0的通解為________.
24.
25.
26.27.28.
29.
30.
31.
32.
33.設(shè),則y'=________。
34.設(shè)y=cosx,則y"=________。
35.
36.
37.
38.設(shè),則f'(x)=______.39.y″+5y′=0的特征方程為——.
40.
三、計算題(20題)41.當x一0時f(x)與sin2x是等價無窮小量,則42.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達式;
(2)求S(x)的最大值.
43.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.44.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.
45.
46.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.47.48.
49.已知某商品市場需求規(guī)律為Q=100e-0.25p,當p=10時,若價格上漲1%,需求量增(減)百分之幾?
50.將f(x)=e-2X展開為x的冪級數(shù).51.
52.求曲線在點(1,3)處的切線方程.53.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.54.
55.
56.求微分方程的通解.57.證明:58.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.59.
60.求微分方程y"-4y'+4y=e-2x的通解.
四、解答題(10題)61.
62.
63.
64.
65.
66.求由曲線xy=1及直線y=x,y=2所圍圖形的面積A。
67.
68.69.求微分方程的通解.70.求直線y=2x+1與直線x=0,x=1和y=0所圍平面圖形的面積,并求該圖形繞x軸旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積。五、高等數(shù)學(xué)(0題)71.求函數(shù)
六、解答題(0題)72.
參考答案
1.C解析:
2.B
3.C解析:
4.C
5.C解析:
6.C
7.D
8.C
9.A
10.C
11.C
12.C因方程:y''-7y'+12y=0的特征方程為r2-7r+12=0,于是有特征根r1=3,r2=4,故微分方程的通解為:y=C1e3x+C2e4x
13.D本題考查了函數(shù)的微分的知識點。
14.C因積分區(qū)域D是以點(2,1)為圓心的一單位圓,且它位于直線x+y=1的上方,即在D內(nèi)恒有x+y>1,所以(x+y)2<(x+y)3.所以有I1<I2.
15.C將原點(0,0,0)代入直線方程成等式,可知直線過原點(或由直線方程x/m=y/n=z/p表示過原點的直線得出上述結(jié)論)。直線的方向向量為(0,2,1),又與x軸同方向的單位向量為(1,0,0),且
(0,2,1)*(1,0,0)=0,
可知所給直線與x軸垂直,因此選C。
16.B
17.D
18.B
19.D解析:
20.C
21.1/21/2解析:
22.-2sin2-2sin2解析:
23.
本題考查的知識點為求解可分離變量微分方程.
24.11解析:
25.
本題考查的知識點為二階常系數(shù)線性齊次微分方程的求解.
26.tanθ-cotθ+C27.0.
本題考查的知識點為定積分的性質(zhì).
積分區(qū)間為對稱區(qū)間,被積函數(shù)為奇函數(shù),因此
28.
29.-ln|x-1|+C
30.
31.
32.eyey
解析:
33.
34.-cosx
35.
36.
37.2
38.本題考查的知識點為復(fù)合函數(shù)導(dǎo)數(shù)的運算.
39.由特征方程的定義可知,所給方程的特征方程為
40.41.由等價無窮小量的定義可知
42.
43.
44.
45.46.函數(shù)的定義域為
注意
47.
48.
49.需求規(guī)律為Q=100ep-2.25p
∴當P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當P=10時,價格上漲1%需求量減少2.5%
50.
51.
則
52.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
53.由二重積分物理意義知
54.
55.
56.
57.
58.
列表:
說明
59.由一階線性微分方程通解公式有
60.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
61.
62.
63.64.解如圖所示,將積分區(qū)域D視作y-型區(qū)域,即
65.
66.
67.解
6
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年商標保護義務(wù)協(xié)議
- 2025年健身房特選設(shè)備訓(xùn)練服務(wù)協(xié)議
- 2025年基層金融質(zhì)押協(xié)議
- 2025年連帶責任保證合同(借款)
- 中小企業(yè)2024年期限勞動合同3篇
- 正規(guī)2025年度藝人經(jīng)紀合同3篇
- 二零二五年度足療技師外出服務(wù)安全協(xié)議范本
- 2025年度度假酒店委托運營管理服務(wù)合同
- 二零二五年度汽車牌照租賃與車輛抵押貸款服務(wù)協(xié)議
- 2025年度門窗行業(yè)產(chǎn)品召回與質(zhì)量追溯合同電子版
- 江蘇省南京市協(xié)同體七校2024-2025學(xué)年高三上學(xué)期期中聯(lián)合考試英語試題答案
- 青島版二年級下冊三位數(shù)加減三位數(shù)豎式計算題200道及答案
- GB/T 12723-2024單位產(chǎn)品能源消耗限額編制通則
- GB/T 16288-2024塑料制品的標志
- 麻風病防治知識課件
- 干部職級晉升積分制管理辦法
- TSG ZF003-2011《爆破片裝置安全技術(shù)監(jiān)察規(guī)程》
- 2024年代理記賬工作總結(jié)6篇
- 電氣工程預(yù)算實例:清單與計價樣本
- VOC廢氣治理工程中電化學(xué)氧化技術(shù)的研究與應(yīng)用
- 煤礦機電設(shè)備培訓(xùn)課件
評論
0/150
提交評論