版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022年湖南省長(zhǎng)沙市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________一、單選題(20題)1.設(shè)函數(shù)f(x)=則f(x)在x=0處()A.可導(dǎo)B.連續(xù)但不可導(dǎo)C.不連續(xù)D.無(wú)定義
2.
3.
4.
A.f(x)-f(a)B.f(a)-f(x)C.f(x)D.f(a)
5.設(shè)f(x),g(x)在[a,b]上連續(xù),則()。
A.若,則在[a,b]上f(x)=0
B.若,則在[a,b]上f(x)=g(x)
C.若a<c<d<b,則
D.若f(x)≤g(z),則
6.設(shè)y=x-5,則dy=().A.A.-5dxB.-dxC.dxD.(x-1)dx
7.
8.設(shè)f'(x)在點(diǎn)x0的某鄰域內(nèi)存在,且f(x0)為f(x)的極大值,則等于().A.A.2B.1C.0D.-2
9.
10.由曲線,直線y=x,x=2所圍面積為
A.
B.
C.
D.
11.設(shè)Y=x2-2x+a,貝0點(diǎn)x=1()。A.為y的極大值點(diǎn)B.為y的極小值點(diǎn)C.不為y的極值點(diǎn)D.是否為y的極值點(diǎn)與a有關(guān)
12.
13.
14.
15.
16.f(x)在[a,b]上可導(dǎo)是f(x)在[a,b]上可積的()。
A.充要條件B.充分條件C.必要條件D.無(wú)關(guān)條件
17.
18.鋼筋混凝土軸心受拉構(gòu)件正截面承載力計(jì)算時(shí),用以考慮縱向彎曲彎曲影響的系數(shù)是()。
A.偏心距增大系數(shù)B.可靠度調(diào)整系數(shù)C.結(jié)構(gòu)重要性系數(shù)D.穩(wěn)定系數(shù)
19.
20.
二、填空題(20題)21.
22.
23.f(x)=lnx,則f[f(x)]=__________。
24.
25.
26.
27.
28.
29.微分方程y=x的通解為_(kāi)_______。
30.
31.
32.
33.
34.如果函數(shù)f(x)在[a,b]上連續(xù),在(a,b)內(nèi)可導(dǎo),則在(a,b)內(nèi)至少存在一點(diǎn)ξ,使得f(b)-f(a)=________。
35.曲線y=2x2-x+1在點(diǎn)(1,2)處的切線方程為_(kāi)_________。
36.函數(shù)f(x)=x2在[-1,1]上滿足羅爾定理的ξ=_________。
37.
38.
39.
40.
三、計(jì)算題(20題)41.求曲線在點(diǎn)(1,3)處的切線方程.
42.
43.求微分方程的通解.
44.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).
45.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
46.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.
47.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
48.
49.
50.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則
51.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).
52.
53.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
54.
55.
56.
57.求微分方程y"-4y'+4y=e-2x的通解.
58.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
59.證明:
60.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.
四、解答題(10題)61.
62.
又可導(dǎo).
63.
64.計(jì)算二重積分
,其中D是由直線
及y=1圍
成的平面區(qū)域.
65.
66.
67.
68.
69.
70.求y=xlnx的極值與極值點(diǎn).五、高等數(shù)學(xué)(0題)71.平面x+y一3z+1=0與平面2x+y+z=0相互關(guān)系是()。
A.斜交B.垂直C.平行D.重合
六、解答題(0題)72.
參考答案
1.A因?yàn)閒"(x)=故選A。
2.D解析:
3.C
4.C
本題考查的知識(shí)點(diǎn)為可變限積分求導(dǎo).
5.D由定積分性質(zhì):若f(x)≤g(x),則
6.C本題考查的知識(shí)點(diǎn)為微分運(yùn)算.
因此選C.
7.C
8.C本題考查的知識(shí)點(diǎn)為極值的必要條件;在一點(diǎn)導(dǎo)數(shù)的定義.
由于f(x0)為f(x)的極大值,且f'(x0)存在,由極值的必要條件可知f'(x0)=0.從而
可知應(yīng)選C.
9.D解析:
10.B
11.B本題考查的知識(shí)點(diǎn)為一元函數(shù)的極值。求解的一般步驟為:先求出函數(shù)的一階導(dǎo)數(shù),令偏導(dǎo)數(shù)等于零,確定函數(shù)的駐點(diǎn).再依極值的充分條件來(lái)判定所求駐點(diǎn)是否為極值點(diǎn)。由于y=x2-2x+a,可由y'=2x-2=0,解得y有唯一駐點(diǎn)x=1.又由于y"=2,可得知y"|x=1=2>0。由極值的充分條件可知x=1為y的極小值點(diǎn),故應(yīng)選B。如果利用配方法,可得y=(x-1)2+a-1≥a-1,且y|x=1=a-1,由極值的定義可知x=1為y的極小值點(diǎn),因此選B。
12.C
13.D
14.B解析:
15.A
16.B∵可導(dǎo)一定連續(xù),連續(xù)一定可積;反之不一定?!嗫蓪?dǎo)是可積的充分條件
17.D
18.D
19.D
20.D
21.y=x3+1
22.1/21/2解析:
23.
則
24.2.
本題考查的知識(shí)點(diǎn)為二次積分的計(jì)算.
由相應(yīng)的二重積分的幾何意義可知,所給二次積分的值等于長(zhǎng)為1,寬為2的矩形的面積值,故為2.或由二次積分計(jì)算可知
25.
解析:本題考查的知識(shí)點(diǎn)為不定積分的湊微分法.
26.1/21/2解析:
27.
本題考查的知識(shí)點(diǎn)為連續(xù)性與極限的關(guān)系.
由于為初等函數(shù),定義域?yàn)?-∞,0),(0,+∞),點(diǎn)x=2為其定義區(qū)間(0,+∞)內(nèi)的點(diǎn),從而知
28.
29.本題考查可分離變量的微分方程.分離變量得dy=xdx,兩端分別積分,∫dy=∫xdx,
30.1
31.R
32.
解析:
33.11解析:
34.f"(ξ)(b-a)由題目條件可知函數(shù)f(x)在[a,b]上滿足拉格朗日中值定理的條件,因此必定存在一點(diǎn)ξ∈(a,b),使f(b)-f(a)=f"(ξ)(b-a)。
35.y-2=3(x-1)(或?qū)憺閥=3x-1)y-2=3(x-1)(或?qū)憺閥=3x-1)
36.0
37.
38.(2x-y)dx+(2y-x)dy(2x-y)dx+(2y-x)dy解析:
39.[-11]
40.
41.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
42.
43.
44.
45.由二重積分物理意義知
46.
47.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
48.
49.由一階線性微分方程通解公式有
50.由等價(jià)無(wú)窮小量的定義可知
51.
列表:
說(shuō)明
52.
53.
54.
則
55.
56.
57.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
58.函數(shù)的定義域?yàn)?/p>
注意
59.
60.
61.
62.解
63.
64.所給積分區(qū)域D如圖5-6所示,如果選擇先對(duì)y積分后對(duì)x積分的二次積分,需要
將積分區(qū)域劃分為幾個(gè)子區(qū)域,如果選擇先對(duì)x積分后對(duì)y積分的二次積分,區(qū)域D可以表示為
0≤y≤1,Y≤x≤y+1,
因此
【評(píng)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年版企業(yè)安全評(píng)估咨詢合同樣本版B版
- 2024淘寶年度合作伙伴線上線下融合合同模板3篇
- 2024泰州環(huán)保企業(yè)員工勞動(dòng)合同書(shū)模板3篇
- 2024柜式空調(diào)機(jī)直接訂購(gòu)采購(gòu)合同
- 2025年度大型綜藝節(jié)目現(xiàn)場(chǎng)管理人員勞動(dòng)合同2篇
- 2024年規(guī)范化二手住宅買賣合同書(shū)版B版
- 2024年規(guī)?;笄蒺B(yǎng)殖場(chǎng)租賃經(jīng)營(yíng)合同3篇
- 保險(xiǎn)業(yè)支持經(jīng)濟(jì)高質(zhì)量發(fā)展策略及實(shí)施路徑
- 二零二五年度二手房抵押貸款與心理健康咨詢服務(wù)合同3篇
- 2025版針對(duì)簽訂次數(shù)的補(bǔ)充協(xié)議范本詳解3篇
- 混合性焦慮和抑郁障礙的護(hù)理查房
- MOOC 發(fā)展心理學(xué)-北京大學(xué) 中國(guó)大學(xué)慕課答案
- 克羅恩病病例分享
- 《養(yǎng)老護(hù)理員》-課件:協(xié)助老年人轉(zhuǎn)換體位
- 山東省高中生物教學(xué)大綱
- 2024中考語(yǔ)文《水滸傳》歷年真題(解析版)
- 接地電阻測(cè)試儀的操作課件
- 《機(jī)修工基礎(chǔ)培訓(xùn)》課件
- 品質(zhì)黃燜雞加盟活動(dòng)策劃
- DLT 754-2013 母線焊接技術(shù)規(guī)程
- 部編版小學(xué)道德與法治五年級(jí)上冊(cè)單元復(fù)習(xí)課件(全冊(cè))
評(píng)論
0/150
提交評(píng)論