版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022年福建省漳州市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.
2.
3.=()。A.
B.
C.
D.
4.方程x2+y2-2z=0表示的二次曲面是.
A.柱面B.球面C.旋轉(zhuǎn)拋物面D.橢球面
5.
6.
7.下列命題不正確的是()。
A.兩個(gè)無(wú)窮大量之和仍為無(wú)窮大量
B.上萬(wàn)個(gè)無(wú)窮小量之和仍為無(wú)窮小量
C.兩個(gè)無(wú)窮大量之積仍為無(wú)窮大量
D.兩個(gè)有界變量之和仍為有界變量
8.
9.
10.
有()個(gè)間斷點(diǎn)。
A.1B.2C.3D.4
11.
12.A.sin(2x-1)+C
B.
C.-sin(2x-1)+C
D.
13.在下列函數(shù)中,在指定區(qū)間為有界的是()。
A.f(x)=22z∈(一∞,0)
B.f(x)=lnxz∈(0,1)
C.
D.f(x)=x2x∈(0,+∞)
14.
15.
16.設(shè)f(x)在點(diǎn)x0處連續(xù),則下列命題中正確的是().A.A.f(x)在點(diǎn)x0必定可導(dǎo)B.f(x)在點(diǎn)x0必定不可導(dǎo)C.必定存在D.可能不存在
17.A.1-cosxB.1+cosxC.2-cosxD.2+cosx
18.設(shè)f(x)=e3x,則在x=0處的二階導(dǎo)數(shù)f"(0)=A.A.3B.6C.9D.9e
19.在企業(yè)中,財(cái)務(wù)主管與財(cái)會(huì)人員之間的職權(quán)關(guān)系是()
A.直線職權(quán)關(guān)系B.參謀職權(quán)關(guān)系C.既是直線職權(quán)關(guān)系又是參謀職權(quán)關(guān)系D.沒(méi)有關(guān)系
20.A.A.
B.
C.
D.
二、填空題(20題)21.
22.微分方程y"+y'=0的通解為_(kāi)_____.
23.
24.設(shè)sinx為f(x)的原函數(shù),則f(x)=________。
25.
26.曲線y=x3-3x+2的拐點(diǎn)是__________。
27.
28.設(shè)區(qū)域D為y=x2,x=y2圍成的在第一象限內(nèi)的區(qū)域,則=______.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
三、計(jì)算題(20題)41.
42.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.
43.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
44.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫(xiě)出S(x)的表達(dá)式;
(2)求S(x)的最大值.
45.
46.求微分方程y"-4y'+4y=e-2x的通解.
47.
48.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.
49.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).
50.
51.證明:
52.
53.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
54.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則
55.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).
56.
57.
58.求微分方程的通解.
59.求曲線在點(diǎn)(1,3)處的切線方程.
60.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
四、解答題(10題)61.
62.
63.設(shè)f(x)=x-5,求f'(x)。
64.已知曲線C的方程為y=3x2,直線ι的方程為y=6x。求由曲線C與直線ι圍成的平面圖形的面積S。
65.
66.
67.
68.
69.
70.
五、高等數(shù)學(xué)(0題)71.∫(2xex+1)dx=___________。
六、解答題(0題)72.
參考答案
1.C解析:
2.C解析:
3.D
4.C本題考查了二次曲面的知識(shí)點(diǎn)。x2+y2-2z=0可化為x2/2+y2/2=z,故表示的是旋轉(zhuǎn)拋物面。
5.D
6.D
7.A∵f(x)→∞;g(x)→∞∴f(x)+g(x)是不定型,不一定是無(wú)窮大。
8.A解析:
9.C
10.C
∵x=0,1,2,是f(x)的三個(gè)孤立間斷∴有3個(gè)間斷點(diǎn)。
11.D
12.B本題考查的知識(shí)點(diǎn)為不定積分換元積分法。
因此選B。
13.A∵0<2x<1x∈(一∞,0)∴f(x)=2x在區(qū)間(一∞,0)內(nèi)為有界函數(shù)。
14.D解析:
15.D
16.C本題考查的知識(shí)點(diǎn)為極限、連續(xù)與可導(dǎo)性的關(guān)系.
函數(shù)f(x)在點(diǎn)x0可導(dǎo),則f(x)在點(diǎn)x0必連續(xù).
函數(shù)f(x)在點(diǎn)x0連續(xù),則必定存在.
函數(shù)f(x)在點(diǎn)x0連續(xù),f(x)在點(diǎn)x0不一定可導(dǎo).
函數(shù)f(x)在點(diǎn)x0不連續(xù),則f(x)在點(diǎn)x0必定不可導(dǎo).
這些性質(zhì)考生應(yīng)該熟記.由這些性質(zhì)可知本例應(yīng)該選C.
17.D
18.Cf(x)=e3x,f'(x)=3e3x,f"(x)=9e3x,f"(0)=9,因此選C。
19.A解析:直線職權(quán)是指管理者直接指導(dǎo)下屬工作的職權(quán)。財(cái)務(wù)主管與財(cái)會(huì)人員之間是直線職權(quán)關(guān)系。
20.Dy=e-2x,y'=(e-2x)'=e-2x(-2x)'=-2e-2x,dy=y'dx=-2e-2xdx,故選D。
21.11解析:
22.y=C1+C2e-x,其中C1,C2為任意常數(shù)本題考查的知識(shí)點(diǎn)為二階線性常系數(shù)齊次微分方程的求解.
二階線性常系數(shù)齊次微分方程求解的一般步驟為:先寫(xiě)出特征方程,求出特征根,再寫(xiě)出方程的通解.
微分方程為y"+y'=0.
特征方程為r3+r=0.
特征根r1=0.r2=-1.
因此所給微分方程的通解為
y=C1+C2e-x,
其牛C1,C2為任意常數(shù).
23.e-1/2
24.本題考查的知識(shí)點(diǎn)為原函數(shù)的概念。
由于sinx為f(x)的原函數(shù),因此f(x)=(sinx)=cosx。
25.3本題考查了冪級(jí)數(shù)的收斂半徑的知識(shí)點(diǎn).
所以收斂半徑R=3.
26.(02)
27.
本題考查的知識(shí)點(diǎn)為兩個(gè):參數(shù)方程形式的函數(shù)求導(dǎo)和可變上限積分求導(dǎo).
28.1/3;本題考查的知識(shí)點(diǎn)為二重積分的計(jì)算.
29.
解析:
30.11解析:
31.
32.90
33.
34.本題考查的知識(shí)點(diǎn)為:求解可分離變量的微分方程.
35.(-22)(-2,2)解析:
36.
37.
38.
39.3/23/2解析:
40.
本題考查的知識(shí)點(diǎn)為二重積分的計(jì)算.
41.
42.
43.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
44.
45.由一階線性微分方程通解公式有
46.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
47.
48.
49.
50.
51.
52.
53.由二重積分物理意義知
54.由等價(jià)無(wú)窮小量的定義可知
55.
列表:
說(shuō)明
56.
則
57.
58.
59.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
60.函數(shù)的定義域?yàn)?/p>
注意
61.
62.
63.f'(x)=x'-5'=1。
64.
65.
66.
67.
68.
69.
70.
71.
72.本題考查的知
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度車輛轉(zhuǎn)讓合同協(xié)議書(shū)電子版標(biāo)準(zhǔn)模板
- 互聯(lián)網(wǎng)與傳統(tǒng)文化保護(hù)與創(chuàng)新考核試卷
- 醫(yī)療器械臨床評(píng)價(jià)與風(fēng)險(xiǎn)管理考核試卷
- 2025-2030全球自適應(yīng)前照明系統(tǒng)(AFLS)行業(yè)調(diào)研及趨勢(shì)分析報(bào)告
- 2025-2030全球攪拌裝置行業(yè)調(diào)研及趨勢(shì)分析報(bào)告
- 高財(cái)課程設(shè)計(jì)自我鑒定
- 風(fēng)變編程課程設(shè)計(jì)團(tuán)隊(duì)
- 帶式課程設(shè)計(jì)
- 鐵路項(xiàng)目管理課程設(shè)計(jì)
- 齒輪軸生產(chǎn)課程設(shè)計(jì)
- 專題6.8 一次函數(shù)章末測(cè)試卷(拔尖卷)(學(xué)生版)八年級(jí)數(shù)學(xué)上冊(cè)舉一反三系列(蘇科版)
- GB/T 4167-2024砝碼
- 老年人視覺(jué)障礙護(hù)理
- 《腦梗塞的健康教育》課件
- 《請(qǐng)柬及邀請(qǐng)函》課件
- 遼寧省普通高中2024-2025學(xué)年高一上學(xué)期12月聯(lián)合考試語(yǔ)文試題(含答案)
- 《個(gè)體防護(hù)裝備安全管理規(guī)范AQ 6111-2023》知識(shí)培訓(xùn)
- 青海原子城的課程設(shè)計(jì)
- 2023年年北京市各區(qū)初三語(yǔ)文一模分類試題匯編 - 作文
- 常州大學(xué)《新媒體文案創(chuàng)作與傳播》2023-2024學(xué)年第一學(xué)期期末試卷
- 麻醉蘇醒期躁動(dòng)患者護(hù)理
評(píng)論
0/150
提交評(píng)論