版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022年遼寧省丹東市成考專升本高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(50題)1.搖篩機(jī)如圖所示,已知O1B=O2B=0.4m,O1O2=AB,桿O1A按
規(guī)律擺動(dòng),(式中∮以rad計(jì),t以s計(jì))。則當(dāng)t=0和t=2s時(shí),關(guān)于篩面中點(diǎn)M的速度和加速度就散不正確的一項(xiàng)為()。
A.當(dāng)t=0時(shí),篩面中點(diǎn)M的速度大小為15.7cm/s
B.當(dāng)t=0時(shí),篩面中點(diǎn)M的法向加速度大小為6.17cm/s2
C.當(dāng)t=2s時(shí),篩面中點(diǎn)M的速度大小為0
D.當(dāng)t=2s時(shí),篩面中點(diǎn)M的切向加速度大小為12.3cm/s2
2.已知作用在簡(jiǎn)支梁上的力F與力偶矩M=Fl,不計(jì)桿件自重和接觸處摩擦,則以下關(guān)于固定鉸鏈支座A的約束反力表述正確的是()。
A.圖(a)與圖(b)相同B.圖(b)與圖(c)相同C.三者都相同D.三者都不相同
3.若f(x)有連續(xù)導(dǎo)數(shù),下列等式中一定成立的是
A.d∫f(x)dx=f(x)dx
B.d∫f(x)dx=f(x)
C.d∫f(x)dx=f(x)+C
D.∫df(x)=f(x)
4.設(shè)y=sin2x,則y等于().A.A.-cos2xB.cos2xC.-2cos2xD.2cos2x
5.函數(shù)z=x2-xy+y2+9x-6y+20有()
A.極大值f(4,1)=63B.極大值f(0,0)=20C.極大值f(-4,1)=-1D.極小值f(-4,1)=-1
6.圖示結(jié)構(gòu)中,F(xiàn)=10N,I為圓桿,直徑d=15mm,2為正方形截面桿,邊長(zhǎng)為a=20mm,α=30。,則各桿強(qiáng)度計(jì)算有誤的一項(xiàng)為()。
A.1桿受拉20kNB.2桿受壓17.3kNC.1桿拉應(yīng)力50MPaD.2桿壓應(yīng)力43.3MPa
7.A.A.導(dǎo)數(shù)存在,且有f(a)=一1B.導(dǎo)數(shù)一定不存在C.f(a)為極大值D.f(a)為極小值
8.微分方程y′-y=0的通解為().
A.y=ex+C
B.y=e-x+C
C.y=Cex
D.y=Ce-x
9.微分方程y+y=0的通解為().A.A.
B.
C.
D.
10.
A.
B.
C.
D.
11.級(jí)數(shù)(k為非零正常數(shù))().A.A.條件收斂B.絕對(duì)收斂C.收斂性與k有關(guān)D.發(fā)散
12.A.A.2xy3
B.2xy3-1
C.2xy3-siny
D.2xy3-siny-1
13.設(shè)函數(shù)z=sin(xy2),則等于()。A.cos(xy2)
B.xy2cos(xy2)
C.2xyeos(xy2)
D.y2cos(xy2)
14.
15.()。A.
B.
C.
D.
16.擺動(dòng)導(dǎo)桿機(jī)構(gòu)如圖所示,已知φ=ωt(ω為常數(shù)),O點(diǎn)到滑竿CD間的距離為l,則關(guān)于滑竿上銷釘A的運(yùn)動(dòng)參數(shù)計(jì)算有誤的是()。
A.運(yùn)動(dòng)方程為x=ltan∮=ltanωt
B.速度方程為
C.加速度方程
D.加速度方程
17.
18.()。A.收斂且和為0
B.收斂且和為α
C.收斂且和為α-α1
D.發(fā)散
19.
20.設(shè)z=ln(x2+y),則等于()。A.
B.
C.
D.
21.
22.
23.
24.()A.A.2xy+y2
B.x2+2xy
C.4xy
D.x2+y2
25.A.等價(jià)無(wú)窮小
B.f(x)是比g(x)高階無(wú)窮小
C.f(x)是比g(x)低階無(wú)窮小
D.f(x)與g(x)是同階但非等價(jià)無(wú)窮小
26.在初始發(fā)展階段,國(guó)際化經(jīng)營(yíng)的主要方式是()
A.直接投資B.進(jìn)出口貿(mào)易C.間接投資D.跨國(guó)投資
27.
28.設(shè)z=tan(xy),則等于()A.A.
B.
C.
D.
29.設(shè)f'(x)為連續(xù)函數(shù),則等于()A.A.
B.
C.
D.
30.
31.
32.
33.
34.A.A.xy
B.yxy
C.(x+1)yln(x+1)
D.y(x+1)y-1
35.
36.如圖所示,在乎板和受拉螺栓之間墊上一個(gè)墊圈,可以提高()。
A.螺栓的拉伸強(qiáng)度B.螺栓的剪切強(qiáng)度C.螺栓的擠壓強(qiáng)度D.平板的擠壓強(qiáng)度
37.若y=ksin2x的一個(gè)原函數(shù)是(2/3)cos2x,則k=
A.-4/3B.-2/3C.-2/3D.-4/3
38.設(shè)函數(shù)/(x)=cosx,則
A.1
B.0
C.
D.-1
39.
40.對(duì)于微分方程y"-2y'+y=xex,利用待定系數(shù)法求其特解y*時(shí),下列特解設(shè)法正確的是()。A.y*=(Ax+B)ex
B.y*=x(Ax+B)ex
C.y*=Ax3ex
D.y*=x2(Ax+B)ex
41.A.A.為所給方程的解,但不是通解
B.為所給方程的解,但不-定是通解
C.為所給方程的通解
D.不為所給方程的解
42.A.A.
B.
C.
D.
43.1954年,()提出了一個(gè)具有劃時(shí)代意義的概念——目標(biāo)管理。
A.西蒙B.德魯克C.梅奧D.亨利.甘特44.微分方程y''-2y'=x的特解應(yīng)設(shè)為A.AxB.Ax+BC.Ax2+BxD.Ax2+Bx+C45.設(shè)y1(x),y2(x)二階常系數(shù)線性微分方程y+py+qy=0的兩個(gè)線性無(wú)關(guān)的解,則它的通解為()A.A.y1(x)+c2y2(x)
B.c1y1(x)+y2(x)
C.y1(x)+y2(x)
D.c1y1(x)+c2y2(x)注.c1,C2為任意常數(shù).
46.A.(-5,5)B.(-∞,0)C.(0,+∞)D.(-∞,+∞)
47.
48.
49.()。A.3B.2C.1D.0
50.
二、填空題(20題)51.
52.已知當(dāng)x→0時(shí),-1與x2是等價(jià)無(wú)窮小,則a=________。
53.
54.
55.設(shè)函數(shù)y=y(x)由方程x2y+y2x+2y=1確定,則y'=______.56.設(shè)y=sin2x,則dy=______.
57.
58.
59.
60.
61.
62.
63.設(shè),則y'=________。
64.
65.
66.67.
68.函數(shù)f(x)=2x2+4x+2的極小值點(diǎn)為x=_________。
69.如果函數(shù)f(x)在[a,b]上連續(xù),在(a,b)內(nèi)可導(dǎo),則在(a,b)內(nèi)至少存在一點(diǎn)ξ,使得f(b)-f(a)=________。
70.三、計(jì)算題(20題)71.證明:72.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
73.
74.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.75.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫(xiě)出S(x)的表達(dá)式;
(2)求S(x)的最大值.
76.
77.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
78.79.
80.求微分方程y"-4y'+4y=e-2x的通解.
81.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.82.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).83.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).84.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則85.求微分方程的通解.86.求曲線在點(diǎn)(1,3)處的切線方程.87.
88.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.89.
90.
四、解答題(10題)91.計(jì)算92.設(shè)ex-ey=siny,求y’93.94.求微分方程的通解.95.96.97.求由曲線y=3-x2與y=2x,y軸所圍成的平面圖形的面積及該封閉圖形繞x軸旋轉(zhuǎn)一周所成旋轉(zhuǎn)體的體積.
98.
99.設(shè)
100.五、高等數(shù)學(xué)(0題)101.
()。
A.0B.1C.2D.4六、解答題(0題)102.
參考答案
1.D
2.D
3.A解析:若設(shè)F'(x)=f(x),由不定積分定義知,∫f(x)dx=F(x)+C。從而
有:d∫f(x)dx=d∫F(x)+C]=F'(x)dx=f(x)dx,故A正確。D中應(yīng)為∫df(x)=f(x)+C。
4.D本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)求導(dǎo)數(shù)的鏈?zhǔn)椒▌t.
5.D
6.C
7.A本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的定義.
8.C所給方程為可分離變量方程.
9.D本題考查的知識(shí)點(diǎn)為-階微分方程的求解.
可以將方程認(rèn)作可分離變量方程;也可以將方程認(rèn)作-階線性微分方程;還可以仿二階線性常系數(shù)齊次微分方程,并作為特例求解.
解法1將方程認(rèn)作可分離變量方程.
解法2將方程認(rèn)作-階線性微分方程.由通解公式可得
解法3認(rèn)作二階常系數(shù)線性齊次微分方程特例求解:
特征方程為r+1=0,
特征根為r=-1,
10.C
11.A
12.A
13.D本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的運(yùn)算。由z=sin(xy2),知可知應(yīng)選D。
14.D解析:
15.C
16.C
17.D解析:
18.C
19.C
20.A本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的計(jì)算。由于故知應(yīng)選A。
21.D
22.C解析:
23.B
24.A
25.D
26.B解析:在初始投資階段,企業(yè)從事國(guó)際化經(jīng)營(yíng)活動(dòng)的主要特點(diǎn)是活動(dòng)方式主要以進(jìn)出口貿(mào)易為主。
27.A
28.B本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)運(yùn)算.
由于z=tan(xy),因此
可知應(yīng)選A.
29.C本題考查的知識(shí)點(diǎn)為牛-萊公式和不定積分的性質(zhì).
可知應(yīng)選C.
30.D
31.A
32.B
33.C解析:
34.C
35.D
36.D
37.D解析:
38.D
39.A解析:
40.D特征方程為r2-2r+1=0,特征根為r=1(二重根),f(x)=xex,α=1為特征根,因此原方程特解y*=x2(Ax+B)ex,因此選D。
41.B本題考查的知識(shí)點(diǎn)為線性常系數(shù)微分方程解的結(jié)構(gòu).
42.D本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的計(jì)算.是關(guān)于y的冪函數(shù),因此故應(yīng)選D.
43.B解析:彼得德魯克最早提出了目標(biāo)管理的思想。
44.C因f(x)=x為一次函數(shù),且特征方程為r2-2r=0,得特征根為r1=0,r2=2.于是特解應(yīng)設(shè)為y*=(Ax+B)x=Ax2+Bx.
45.D
46.C本題考查的知識(shí)點(diǎn)為判定函數(shù)的單調(diào)性。
47.D
48.A
49.A
50.C
51.(2x-y)dx+(2y-x)dy(2x-y)dx+(2y-x)dy解析:52.當(dāng)x→0時(shí),-1與x2等價(jià),應(yīng)滿足所以當(dāng)a=2時(shí)是等價(jià)的。
53.[e+∞)(注:如果寫(xiě)成x≥e或(e+∞)或x>e都可以)。[e,+∞)(注:如果寫(xiě)成x≥e或(e,+∞)或x>e都可以)。解析:
54.11解析:
55.
;本題考查的知識(shí)點(diǎn)為隱函數(shù)的求導(dǎo).
將x2y+y2x+2y=1兩端關(guān)于x求導(dǎo),(2xy+x2y')+(2yy'x+y2)+2y'=0,(x2+2xy+2)y'+(2xy+y2)=0,因此y'=56.2cos2xdx這類問(wèn)題通常有兩種解法.
解法1利用公式dy=y'dx,先求y',由于y'=cos2x·(2x)'2cos2x,
因此dy=2cos2xdx.
解法2利用微分運(yùn)算公式
dy=d(sin2x)=cos2x·d(2x)=2cos2xdx.
57.x-arctanx+C
58.arctanx+C
59.60.本題考查的知識(shí)點(diǎn)為不定積分的換元積分法。
61.0
62.
63.
64.-1
65.
66.
本題考查的知識(shí)點(diǎn)為初等函數(shù)的求導(dǎo)運(yùn)算.
本題需利用導(dǎo)數(shù)的四則運(yùn)算法則求解.
本題中常見(jiàn)的錯(cuò)誤有
這是由于誤將sin2認(rèn)作sinx,事實(shí)上sin2為-個(gè)常數(shù),而常數(shù)的導(dǎo)數(shù)為0,即
請(qǐng)考生注意,不論以什么函數(shù)形式出現(xiàn),只要是常數(shù),它的導(dǎo)數(shù)必定為0.
67.
本題考查的知識(shí)點(diǎn)為二階常系數(shù)線性齊次微分方程的求解.
68.-1
69.f"(ξ)(b-a)由題目條件可知函數(shù)f(x)在[a,b]上滿足拉格朗日中值定理的條件,因此必定存在一點(diǎn)ξ∈(a,b),使f(b)-f(a)=f"(ξ)(b-a)。
70.
71.
72.函數(shù)的定義域?yàn)?/p>
注意
73.74.由二重積分物理意義知
75.
76.由一階線性微分方程通解公式有
77.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
78.
79.
80.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
81.
82.
83.
列表:
說(shuō)明
84.由等價(jià)無(wú)窮小量的定義可知
85.86.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
87.
則
88.
89.
90.
91.本題
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 山西省臨汾市(2024年-2025年小學(xué)六年級(jí)語(yǔ)文)統(tǒng)編版課后作業(yè)(上學(xué)期)試卷及答案
- 2024年社區(qū)衛(wèi)生服務(wù)社區(qū)精神衛(wèi)生服務(wù)合同3篇
- 2024年跨境航空快遞代理協(xié)議條款一
- 2024年租賃合同中的租賃車輛技術(shù)參數(shù)
- 2024年貨物生產(chǎn)計(jì)件承包合同
- 2024年集體產(chǎn)權(quán)商業(yè)房產(chǎn)出售合同
- 2024年跨境物流運(yùn)輸服務(wù)協(xié)議范本版
- 2024年蟲(chóng)害治理技術(shù)服務(wù)合同《民法典》定制版版B版
- 2024年高標(biāo)準(zhǔn)建筑工地環(huán)保砂石運(yùn)輸合作協(xié)議3篇
- 2024年股權(quán)轉(zhuǎn)讓合同書(shū)模板
- (八省聯(lián)考)2025年高考綜合改革適應(yīng)性演練 語(yǔ)文試卷(含答案解析)
- GB/T 45002-2024水泥膠砂保水率測(cè)定方法
- ISO 56001-2024《創(chuàng)新管理體系-要求》專業(yè)解讀與應(yīng)用實(shí)踐指導(dǎo)材料之1:0 引言(雷澤佳編制-2025B0)
- 2024版環(huán)衛(wèi)清潔班車租賃服務(wù)協(xié)議3篇
- 生產(chǎn)安全事故事件管理知識(shí)培訓(xùn)課件
- 藥劑科工作人員的專業(yè)提升計(jì)劃
- 2024-2025學(xué)年度第一學(xué)期二年級(jí)語(yǔ)文寒假作業(yè)第二十一天
- 貸款用設(shè)備購(gòu)銷合同范例
- 公務(wù)員行測(cè)真題題庫(kù)及答案
- 2025支部會(huì)議記錄范文
- 部隊(duì)保密安全課件
評(píng)論
0/150
提交評(píng)論