版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022年遼寧省本溪市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.設(shè)函數(shù)f(x)在(0,1)內(nèi)可導(dǎo),f'(x)>0,則f(x)在(0,1)內(nèi)()A.A.單調(diào)減少B.單調(diào)增加C.為常量D.不為常量,也不單調(diào)
2.
3.
4.
5.設(shè)有直線當(dāng)直線l1與l2平行時(shí),λ等于().
A.1B.0C.-1/2D.-1
6.
7.已知y=ksin2x的一個(gè)原函數(shù)為y=cos2x,則k等于().A.A.2B.1C.-lD.-28.微分方程y'=x的通解為A.A.2x2+C
B.x2+C
C.(1/2)x2+C
D.2x+C
9.A.0B.1C.∞D(zhuǎn).不存在但不是∞
10.下列函數(shù)在指定區(qū)間上滿足羅爾中值定理?xiàng)l件的是
A.
B.f(x)=(x-4)2,x∈[-2,4]
C.
D.f(x)=|x|,x∈[-1,1]
11.
12.微分方程y"-4y=0的特征根為A.A.0,4B.-2,2C.-2,4D.2,4
13.
14.設(shè)函數(shù)f(x)=arcsinx,則f'(x)等于().
A.-sinx
B.cosx
C.
D.
15.
16.
17.
18.
19.
20.
二、填空題(20題)21.
22.
20.
23.24.
25.方程cosxsinydx+sinxcosydy=O的通解為_(kāi)_____.
26.方程y'-ex-y=0的通解為_(kāi)____.
27.28.過(guò)點(diǎn)Mo(1,-1,0)且與平面x-y+3z=1平行的平面方程為_(kāi)______.29.
30.設(shè)z=sin(x2+y2),則dz=________。
31.
32.
33.
34.
35.
36.37.級(jí)數(shù)的收斂區(qū)間為_(kāi)_____.
38.
39.
40.
三、計(jì)算題(20題)41.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
42.
43.
44.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.45.證明:46.求曲線在點(diǎn)(1,3)處的切線方程.47.
48.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫(xiě)出S(x)的表達(dá)式;
(2)求S(x)的最大值.
49.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).50.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.51.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則52.
53.
54.求微分方程的通解.55.56.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).
57.求微分方程y"-4y'+4y=e-2x的通解.
58.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
59.60.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.四、解答題(10題)61.
62.
63.
64.
65.設(shè)z=xsiny,求dz。
66.67.
68.求曲線y=x2在(0,1)內(nèi)的一條切線,使由該切線與x=0、x=1和y=x2所圍圖形的面積最小。
69.
70.
五、高等數(shù)學(xué)(0題)71.求y=ln(x2+1)的凹凸區(qū)間,拐點(diǎn)。
六、解答題(0題)72.
參考答案
1.B由于f'(x)>0,可知f(x)在(0,1)內(nèi)單調(diào)增加.因此選B.
2.A解析:
3.A解析:
4.C
5.C解析:
6.C
7.D本題考查的知識(shí)點(diǎn)為原函數(shù)的概念、復(fù)合函數(shù)求導(dǎo).
8.C
9.D本題考查了函數(shù)的極限的知識(shí)點(diǎn)。
10.C
11.A
12.B由r2-4=0,r1=2,r2=-2,知y"-4y=0的特征根為2,-2,故選B。
13.B
14.C解析:本題考查的知識(shí)點(diǎn)為基本導(dǎo)數(shù)公式.
可知應(yīng)選C.
15.B
16.C解析:
17.A
18.D
19.C
20.A
21.本題考查的知識(shí)點(diǎn)為兩個(gè):參數(shù)方程形式的函數(shù)求導(dǎo)和可變上限積分求導(dǎo).
22.
23.0
24.
25.sinx·siny=C由cosxsinydx+sinxcosydy=0,知sinydsinx+sinxdsiny=0,即d(sinx·siny)=0,兩邊積分得sinx·siny=C,這就是方程的通解.26.ey=ex+Cy'-ex-y=0,可改寫(xiě)為eydy=exdx,兩邊積分得ey=ex+C.
27.28.由于已知平面的法線向量,所求平面與已知平面平行,可取所求平面法線向量,又平面過(guò)點(diǎn)Mo(1,-1,0),由平面的點(diǎn)法式方程可知,所求平面為29.2.
本題考查的知識(shí)點(diǎn)為極限的運(yùn)算.
能利用洛必達(dá)法則求解.
如果計(jì)算極限,應(yīng)該先判定其類型,再選擇計(jì)算方法.當(dāng)所求極限為分式時(shí):
若分子與分母的極限都存在,且分母的極限不為零,則可以利用極限的商的運(yùn)算法則求極限.
若分子與分母的極限都存在,但是分子的極限不為零,而分母的極限為零,則所求極限為無(wú)窮大量.
檢查是否滿足洛必達(dá)法則的其他條件,是否可以進(jìn)行等價(jià)無(wú)窮小量代換,所求極限的分子或分母是否有非零因子,可以單獨(dú)進(jìn)行極限運(yùn)算等.
30.2cos(x2+y2)(xdx+ydy)
31.2x
32.
33.12x
34.1/(1-x)2
35.-2-2解析:
36.解析:37.(-1,1)本題考查的知識(shí)點(diǎn)為求冪級(jí)數(shù)的收斂區(qū)間.
所給級(jí)數(shù)為不缺項(xiàng)情形.
可知收斂半徑,因此收斂區(qū)間為
(-1,1).
注:《綱》中指出,收斂區(qū)間為(-R,R),不包括端點(diǎn).
本題一些考生填1,這是誤將收斂區(qū)間看作收斂半徑,多數(shù)是由于考試時(shí)過(guò)于緊張而導(dǎo)致的錯(cuò)誤.
38.11解析:
39.11解析:
40.極大值為8極大值為841.由二重積分物理意義知
42.43.由一階線性微分方程通解公式有
44.
45.
46.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
47.
則
48.
49.
50.
51.由等價(jià)無(wú)窮小量的定義可知
52.
53.
54.
55.
56.
列表:
說(shuō)明
57.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
58.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
59.60.函數(shù)的定義域?yàn)?/p>
注意
61.
62.
63.
64.
65
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 基于2025年度區(qū)塊鏈技術(shù)應(yīng)用合作協(xié)議3篇
- 2025年度汽車租賃市場(chǎng)拓展合作協(xié)議合同4篇
- 2025年度二零二五年度獼猴桃包裝設(shè)計(jì)及品牌推廣合同4篇
- 二零二五版建筑工程安全施工許可證申請(qǐng)合同3篇
- 2025版信托資金借貸合同爭(zhēng)議解決爭(zhēng)議管轄條款3篇
- 2025年度健康管理機(jī)構(gòu)臨時(shí)健康管理師勞動(dòng)合同4篇
- 二零二五年度海上旅游船租賃服務(wù)合同范本3篇
- 個(gè)人住宅買賣法律合同(2024年修訂)版B版
- 2025年度戶外運(yùn)動(dòng)用品門店承包管理服務(wù)協(xié)議4篇
- 二零二五年柑桔加工副產(chǎn)品回收利用合同2篇
- 道路瀝青工程施工方案
- 《田口方法的導(dǎo)入》課件
- 內(nèi)陸?zhàn)B殖與水產(chǎn)品市場(chǎng)營(yíng)銷策略考核試卷
- 票據(jù)業(yè)務(wù)居間合同模板
- 承包鋼板水泥庫(kù)合同范本(2篇)
- DLT 572-2021 電力變壓器運(yùn)行規(guī)程
- 公司沒(méi)繳社保勞動(dòng)仲裁申請(qǐng)書(shū)
- 損傷力學(xué)與斷裂分析
- 2024年縣鄉(xiāng)教師選調(diào)進(jìn)城考試《教育學(xué)》題庫(kù)及完整答案(考點(diǎn)梳理)
- 車借給別人免責(zé)協(xié)議書(shū)
- 應(yīng)急預(yù)案評(píng)分標(biāo)準(zhǔn)表
評(píng)論
0/150
提交評(píng)論