版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022年陜西省漢中市普通高校對口單招高等數(shù)學一自考模擬考試(含答案)學校:________班級:________姓名:________考號:________一、單選題(20題)1.A.A.2
B.
C.1
D.-2
2.下列關(guān)于動載荷的敘述不正確的一項是()。
A.動載荷和靜載荷的本質(zhì)區(qū)別是前者構(gòu)件內(nèi)各點的加速度必須考慮,而后者可忽略不計
B.勻速直線運動時的動荷因數(shù)為
C.自由落體沖擊時的動荷因數(shù)為
D.增大靜變形是減小沖擊載荷的主要途徑
3.
4.
5.函數(shù)y=ex+arctanx在區(qū)間[-1,1]上()
A.單調(diào)減少B.單調(diào)增加C.無最大值D.無最小值
6.
7.下列命題不正確的是()。
A.兩個無窮大量之和仍為無窮大量
B.上萬個無窮小量之和仍為無窮小量
C.兩個無窮大量之積仍為無窮大量
D.兩個有界變量之和仍為有界變量
8.A.A.
B.
C.
D.
9.
10.
11.()A.A.2xy+y2
B.x2+2xy
C.4xy
D.x2+y2
12.
13.下列關(guān)系正確的是()。A.
B.
C.
D.
14.
A.6xarctanx2
B.6xtanx2+5
C.5
D.6xcos2x
15.曲線的水平漸近線的方程是()
A.y=2B.y=-2C.y=1D.y=-116.當x→0時,2x+x2與x2比較是A.A.高階無窮小B.低階無窮小C.同階但不等價無窮小D.等價無窮小
17.()。A.2ex+C
B.ex+C
C.2e2x+C
D.e2x+C
18.函數(shù)y=ex+e-x的單調(diào)增加區(qū)間是
A.(-∞,+∞)B.(-∞,0]C.(-1,1)D.[0,+∞)
19.
20.設Y=x2-2x+a,貝0點x=1()。A.為y的極大值點B.為y的極小值點C.不為y的極值點D.是否為y的極值點與a有關(guān)
二、填空題(20題)21.
22.設sinx為f(x)的原函數(shù),則f(x)=________。
23.微分方程y"-y'-2y=0的通解為______.
24.設區(qū)域D由y軸,y=x,y=1所圍成,則.
25.設y=1nx,則y'=__________.
26.
27.
28.
29.
30.
31.設f(x)=ax3-6ax2+b在區(qū)間[-1,2]的最大值為2,最小值為-29,又知a>0,則a,b的取值為______.
32.
33.
34.
35.
36.
37.
38.設z=x3y2,則=________。
39.
40.直線的方向向量為________。
三、計算題(20題)41.
42.證明:
43.
44.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.
45.設拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達式;
(2)求S(x)的最大值.
46.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
47.求微分方程y"-4y'+4y=e-2x的通解.
48.
49.
50.求曲線在點(1,3)處的切線方程.
51.當x一0時f(x)與sin2x是等價無窮小量,則
52.求微分方程的通解.
53.
54.
55.設平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
56.
57.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.
58.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.
59.已知某商品市場需求規(guī)律為Q=100e-0.25p,當p=10時,若價格上漲1%,需求量增(減)百分之幾?
60.將f(x)=e-2X展開為x的冪級數(shù).
四、解答題(10題)61.
62.設函數(shù)f(x)=ax3+bx2+cx+d,問常數(shù)a,b,c滿足什么關(guān)系時,f(x)分別沒有極值、可能有一個極值、可能有兩個極值?
63.
64.
65.
66.
67.求曲線y=在點(1,1)處的切線方程.
68.
69.求方程y''2y'+5y=ex的通解.
70.
五、高等數(shù)學(0題)71.求∫x3。lnxdx。
六、解答題(0題)72.
又可導.
參考答案
1.C本題考查的知識點為函數(shù)連續(xù)性的概念.
2.C
3.B解析:
4.B
5.B因處處成立,于是函數(shù)在(-∞,+∞)內(nèi)都是單調(diào)增加的,故在[-1,1]上單調(diào)增加.
6.B
7.A∵f(x)→∞;g(x)→∞∴f(x)+g(x)是不定型,不一定是無窮大。
8.D
9.B
10.D
11.A
12.D解析:
13.B由不定積分的性質(zhì)可知,故選B.
14.C
15.D
16.B
17.B
18.Dy=ex+e-x,則y'=ex-e-x,當x>0時,y'>0,所以y在區(qū)間[0,+∞)上單調(diào)遞增.
19.B
20.B本題考查的知識點為一元函數(shù)的極值。求解的一般步驟為:先求出函數(shù)的一階導數(shù),令偏導數(shù)等于零,確定函數(shù)的駐點.再依極值的充分條件來判定所求駐點是否為極值點。由于y=x2-2x+a,可由y'=2x-2=0,解得y有唯一駐點x=1.又由于y"=2,可得知y"|x=1=2>0。由極值的充分條件可知x=1為y的極小值點,故應選B。如果利用配方法,可得y=(x-1)2+a-1≥a-1,且y|x=1=a-1,由極值的定義可知x=1為y的極小值點,因此選B。
21.1/(1-x)2
22.本題考查的知識點為原函數(shù)的概念。
由于sinx為f(x)的原函數(shù),因此f(x)=(sinx)=cosx。
23.y=C1e-x+C2e2x本題考查的知識點為二階線性常系數(shù)微分方程的求解.
特征方程為r2-r-2=0,
特征根為r1=-1,r2=2,
微分方程的通解為y=C1e-x+C2ex.
24.1/2本題考查的知識點為計算二重積分.其積分區(qū)域如圖1-2陰影區(qū)域所示.
可利用二重積分的幾何意義或?qū)⒍胤e分化為二次積分解之.
解法1由二重積分的幾何意義可知表示積分區(qū)域D的面積,而區(qū)域D為等腰直角三角形,面積為1/2,因此.
解法2化為先對y積分,后對x積分的二次積分.
作平行于y軸的直線與區(qū)域D相交,沿y軸正向看,入口曲線為y=x,作為積分下限;出口曲線為y=1,作為積分上限,因此
x≤y≤1.
區(qū)域D在x軸上的投影最小值為x=0,最大值為x=1,因此
0≤x≤1.
可得知
解法3化為先對x積分,后對Y積分的二次積分.
作平行于x軸的直線與區(qū)域D相交,沿x軸正向看,入口曲線為x=0,作為積分下限;出口曲線為x=y,作為積分上限,因此
0≤x≤y.
區(qū)域D在y軸上投影的最小值為y=0,最大值為y=1,因此
0≤y≤1.
可得知
25.
26.
27.2xsinx2;本題考查的知識點為可變上限積分的求導.
28.2m
29.
30.
31.
f'(x)=3ax2-12ax,f'(x)=0,則x=0或x=4,而x=4不在[-1,2]中,故舍去.f''(x)=6ax-12a,f''(0)=-12a,因為a>0,所以,f''(0)<0,所以x=0是極值點.又因f(-1)=-a-6a+b=b-7a,f(0)=b,f(2)=8a-24a+b=b-16a,因為a>0,故當x=0時,f(x)最大,即b=2;當x=2時,f(x)最小.所以b-16a=-29,即16a=2+29=31,故a=.
32.
解析:
33.f(x)本題考查了導數(shù)的原函數(shù)的知識點。
34.-1
35.31/16;2本題考查了函數(shù)的最大、最小值的知識點.
f'(x)=3ax2-12ax,f'(x)=0,則x=0或x=4,而x=4不在[-1,2]中,故舍去.f''(x)=6ax-12a,f''(0)=-12a,因為a>0,所以f"(0)<0,所以x=0是極值點.又因f(-1)=-a-6a+b=b-7a,f(0)=b,f(2)=8a-24a+b=b-16a,因為a>0,故當x=0時,f(x)最大,即b=2;當x=2時,f(x)最小.所以b-16a=-29,即16a=2+29=31,故a=31/16.
36.2/52/5解析:
37.2m2m解析:
38.由z=x3y2,得=2x3y,故dz=3x2y2dx+2x3ydy,。
39.3
40.直線l的方向向量為
41.
42.
43.由一階線性微分方程通解公式有
44.
列表:
說明
45.
46.函數(shù)的定義域為
注意
47.解:原方程對應的齊次方程為y"-4y'+4y=0,
48.
49.
則
50.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導數(shù)f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
51.由等價無窮小量的定義可知
52.
53.
54.
55.由二重積分物理意義知
56.
57.
58.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 44985.4-2024農(nóng)業(yè)物聯(lián)網(wǎng)通用技術(shù)要求第4部分:畜禽養(yǎng)殖
- GB/T 21551.6-2024家用和類似用途電器的抗菌、除菌、凈化功能第6部分:空調(diào)器的特殊要求
- 2025年度大型水利工程采砂廠承包權(quán)轉(zhuǎn)讓合同范本3篇
- 二零二五版國際貿(mào)易合同主體欺詐責任劃分與損害賠償合同3篇
- 2025年度鮮羊奶品牌授權(quán)及區(qū)域代理銷售合同范本3篇
- 2025年度出租車行業(yè)駕駛員權(quán)益保護合作協(xié)議3篇
- 2024版加油站柴油訂貨與銷售協(xié)議范例版B版
- 專業(yè)水泥銷售協(xié)議:2024版細則版A版
- 二零二五年度高壓電纜敷設與維護保養(yǎng)合同大全3篇
- 2024版吉陽區(qū)環(huán)衛(wèi)設施安全檢查評估合同
- 危險性較大分部分項工程及施工現(xiàn)場易發(fā)生重大事故的部位、環(huán)節(jié)的預防監(jiān)控措施
- 繼電保護試題庫(含參考答案)
- 《榜樣9》觀后感心得體會四
- 2023事業(yè)單位筆試《公共基礎(chǔ)知識》備考題庫(含答案)
- 《水下拋石基床振動夯實及整平施工規(guī)程》
- 2025年云南大理州工業(yè)投資(集團)限公司招聘31人管理單位筆試遴選500模擬題附帶答案詳解
- 風電危險源辨識及控制措施
- 《教師職業(yè)道德與政策法規(guī)》課程教學大綱
- 兒童傳染病預防課件
- 護理組長年底述職報告
- 《住院患者身體約束的護理》團體標準解讀課件
評論
0/150
提交評論