2022年黑龍江省齊齊哈爾市成考專升本高等數(shù)學(xué)一自考真題(含答案)_第1頁
2022年黑龍江省齊齊哈爾市成考專升本高等數(shù)學(xué)一自考真題(含答案)_第2頁
2022年黑龍江省齊齊哈爾市成考專升本高等數(shù)學(xué)一自考真題(含答案)_第3頁
2022年黑龍江省齊齊哈爾市成考專升本高等數(shù)學(xué)一自考真題(含答案)_第4頁
2022年黑龍江省齊齊哈爾市成考專升本高等數(shù)學(xué)一自考真題(含答案)_第5頁
已閱讀5頁,還剩35頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022年黑龍江省齊齊哈爾市成考專升本高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級:________姓名:________考號:________

一、單選題(50題)1.級數(shù)()。A.絕對收斂B.條件收斂C.發(fā)散D.收斂性與k有關(guān)

2.

A.絕對收斂

B.條件收斂

C.發(fā)散

D.收斂性不能判定

3.

4.

5.曲線y=x+(1/x)的凹區(qū)間是

A.(-∞,-1)B.(-1,+∞)C.(-∞,0)D.(0,+∞)

6.

7.

8.A.充分條件B.必要條件C.充要條件D.以上都不對

9.點(diǎn)M(4,-3,5)到Ox軸的距離d=()A.A.

B.

C.

D.

10.設(shè)f(x)在點(diǎn)x0的某鄰域內(nèi)有定義,且,則f'(x0)等于().A.-1B.-1/2C.1/2D.1

11.過點(diǎn)(1,0,O),(0,1,O),(0,0,1)的平面方程為()A.A.x+y+z=1

B.2x+y+z=1

C.x+2y+z=1

D.x+y+2z=1

12.

13.A.A.∞B.1C.0D.-1

14.當(dāng)x→0時(shí),3x是x的().

A.高階無窮小量B.等價(jià)無窮小量C.同階無窮小量,但不是等價(jià)無窮小量D.低階無窮小量

15.

16.函數(shù)y=x2-x+1在區(qū)間[-1,3]上滿足拉格朗日中值定理的ξ=A.A.-3/4B.0C.3/4D.1

17.設(shè)函數(shù)f(x)=2sinx,則f(x)等于().

A.2sinxB.2cosxC.-2sinxD.-2cosx

18.

19.

20.A.exln2

B.e2xln2

C.ex+ln2

D.e2x+ln2

21.對于微分方程y"-2y'+y=xex,利用待定系數(shù)法求其特解y*時(shí),下列特解設(shè)法正確的是()。A.y*=(Ax+B)ex

B.y*=x(Ax+B)ex

C.y*=Ax3ex

D.y*=x2(Ax+B)ex

22.A.A.arctanx2

B.2xarctanx

C.2xarctanx2

D.

23.()A.A.

B.

C.

D.

24.

25.

26.下列命題正確的是()A.A.

B.

C.

D.

27.

28.

A.f(x)-f(a)B.f(a)-f(x)C.f(x)D.f(a)

29.()A.A.(-∞,-3)和(3,+∞)

B.(-3,3)

C.(-∞,O)和(0,+∞)

D.(-3,0)和(0,3)

30.設(shè)y=2x3,則dy=().

A.2x2dx

B.6x2dx

C.3x2dx

D.x2dx

31.設(shè)平面則平面π1與π2的關(guān)系為().A.A.平行但不重合B.重合C.垂直D.既不平行,也不垂直

32.如圖所示,在半徑為R的鐵環(huán)上套一小環(huán)M,桿AB穿過小環(huán)M并勻速繞A點(diǎn)轉(zhuǎn)動(dòng),已知轉(zhuǎn)角φ=ωt(其中ω為一常數(shù),φ的單位為rad,t的單位為s),開始時(shí)AB桿處于水平位置,則當(dāng)小環(huán)M運(yùn)動(dòng)到圖示位置時(shí)(以MO為坐標(biāo)原點(diǎn),小環(huán)Md運(yùn)動(dòng)方程為正方向建立自然坐標(biāo)軸),下面說法不正確的一項(xiàng)是()。

A.小環(huán)M的運(yùn)動(dòng)方程為s=2Rωt

B.小環(huán)M的速度為

C.小環(huán)M的切向加速度為0

D.小環(huán)M的法向加速度為2Rω2

33.f(x)在[a,b]上連續(xù)是f(x)在[a,b]上有界的()條件。A.充分B.必要C.充要D.非充分也非必要

34.在空間直角坐標(biāo)系中,方程x+z2=z的圖形是A.A.圓柱面B.圓C.拋物線D.旋轉(zhuǎn)拋物面

35.A.A.lnx+CB.-lnx+CC.f(lnx)+CD.-f(lnx)+C

36.下列命題不正確的是()。

A.兩個(gè)無窮大量之和仍為無窮大量

B.上萬個(gè)無窮小量之和仍為無窮小量

C.兩個(gè)無窮大量之積仍為無窮大量

D.兩個(gè)有界變量之和仍為有界變量

37.

38.設(shè)y=cos4x,則dy=()。A.

B.

C.

D.

39.

40.∫1+∞e-xdx=()

A.-eB.-e-1

C.e-1

D.e

41.下列關(guān)于動(dòng)載荷的敘述不正確的一項(xiàng)是()。

A.動(dòng)載荷和靜載荷的本質(zhì)區(qū)別是前者構(gòu)件內(nèi)各點(diǎn)的加速度必須考慮,而后者可忽略不計(jì)

B.勻速直線運(yùn)動(dòng)時(shí)的動(dòng)荷因數(shù)為

C.自由落體沖擊時(shí)的動(dòng)荷因數(shù)為

D.增大靜變形是減小沖擊載荷的主要途徑

42.A.2/5B.0C.-2/5D.1/2

43.二次積分等于()A.A.

B.

C.

D.

44.若∫f(x)dx=F(x)+C,則∫f(2x)dx等于().A.A.2F(2x)+CB.F(2x)+CC.F(x)+CD.F(2x)/2+C

45.構(gòu)件承載能力不包括()。

A.強(qiáng)度B.剛度C.穩(wěn)定性D.平衡性

46.A.3B.2C.1D.1/2

47.A.A.1/2B.1C.2D.e

48.()A.A.1/2B.1C.2D.e

49.績效評估的第一個(gè)步驟是()

A.確定特定的績效評估目標(biāo)B.確定考評責(zé)任者C.評價(jià)業(yè)績D.公布考評結(jié)果,交流考評意見

50.

二、填空題(20題)51.

52.設(shè)Ф(x)=∫0xln(1+t)dt,則Ф"(x)=________。

53.

54.已知當(dāng)x→0時(shí),-1與x2是等價(jià)無窮小,則a=________。

55.

56.

57.

58.

59.空間直角坐標(biāo)系中方程x2+y2=9表示的曲線是________。

60.

61.

62.

63.

64.函數(shù)的間斷點(diǎn)為______.

65.

66.

67.

68.冪級數(shù)的收斂區(qū)間為______.

69.

70.

三、計(jì)算題(20題)71.

72.

73.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.

74.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

75.求微分方程y"-4y'+4y=e-2x的通解.

76.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.

77.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則

78.

79.證明:

80.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

81.求曲線在點(diǎn)(1,3)處的切線方程.

82.

83.研究級數(shù)的收斂性(即何時(shí)絕對收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.

84.

85.

86.求微分方程的通解.

87.

88.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.

89.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).

90.將f(x)=e-2X展開為x的冪級數(shù).

四、解答題(10題)91.

92.

93.

94.

95.計(jì)算

96.給定曲線y=x3與直線y=px-q(其中p>0),求p與q為何關(guān)系時(shí),直線y=px-q是y=x3的切線.

97.將函數(shù)f(x)=lnx展開成(x-1)的冪級數(shù),并指出收斂區(qū)間。

98.

99.

100.所圍成的平面區(qū)域。

五、高等數(shù)學(xué)(0題)101.f(x)在x=0的某鄰域內(nèi)一階導(dǎo)數(shù)連續(xù)且則()。A.x=0不是f(x)的極值點(diǎn)B.x=0是f(x)的極大值點(diǎn)C.x=0是f(x)的極小值點(diǎn)D.x=0是f(x)的拐點(diǎn)

六、解答題(0題)102.

參考答案

1.A本題考查的知識(shí)點(diǎn)為級數(shù)的絕對收斂與條件收斂。

由于的p級數(shù),可知為收斂級數(shù)。

可知收斂,所給級數(shù)絕對收斂,故應(yīng)選A。

2.A

3.A

4.C

5.D解析:

6.A

7.D

8.D本題考查了判斷函數(shù)極限的存在性的知識(shí)點(diǎn).

極限是否存在與函數(shù)在該點(diǎn)有無定義無關(guān).

9.B

10.B由導(dǎo)數(shù)的定義可知

可知,故應(yīng)選B。

11.A

12.A

13.C本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的幾何意義.

14.C本題考查的知識(shí)點(diǎn)為無窮小量階的比較.

應(yīng)依定義考察

由此可知,當(dāng)x→0時(shí),3x是x的同階無窮小量,但不是等價(jià)無窮小量,故知應(yīng)選C.

本題應(yīng)明確的是:考察當(dāng)x→x0時(shí)無窮小量β與無窮小量α的階的關(guān)系時(shí),要判定極限

這里是以α為“基本量”,考生要特別注意此點(diǎn),才能避免錯(cuò)誤.

15.B

16.D

17.B本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的運(yùn)算.

f(x)=2sinx,

f(x)=2(sinx)≈2cosx.

可知應(yīng)選B.

18.B

19.B解析:

20.B本題考查了一階線性齊次方程的知識(shí)點(diǎn)。

因f'(x)=f(x)·2,即y'=2y,此為常系數(shù)一階線性齊次方程,其特征根為r=2,所以其通解為y=Ce2x,又當(dāng)x=0時(shí),f(0)=ln2,所以C=In2,故f(x)=e2xln2.

注:方程y'=2y求解時(shí)也可用變量分離.

21.D特征方程為r2-2r+1=0,特征根為r=1(二重根),f(x)=xex,α=1為特征根,因此原方程特解y*=x2(Ax+B)ex,因此選D。

22.C

23.A

24.A解析:

25.B

26.D

27.D

28.C

本題考查的知識(shí)點(diǎn)為可變限積分求導(dǎo).

29.D

30.B由微分基本公式及四則運(yùn)算法則可求得.也可以利用dy=y′dx求得故選B.

31.C本題考查的知識(shí)點(diǎn)為兩平面的位置關(guān)系.

由于平面π1,π2的法向量分別為

可知n1⊥n2,從而π1⊥π2.應(yīng)選C.

32.D

33.A定理:閉區(qū)間上的連續(xù)函數(shù)必有界;反之不一定。

34.A

35.C

36.A∵f(x)→∞;g(x)→∞∴f(x)+g(x)是不定型,不一定是無窮大。

37.C

38.B

39.C

40.C

41.C

42.A本題考查了定積分的性質(zhì)的知識(shí)點(diǎn)

43.A本題考查的知識(shí)點(diǎn)為交換二次積分的積分次序.

由所給二次積分限可知積分區(qū)域D的不等式表達(dá)式為:

0≤x≤1,0≤y≤1-x,

其圖形如圖1-1所示.

交換積分次序,D可以表示為

0≤y≤1,0≤x≤1-y,

因此

可知應(yīng)選A.

44.D本題考查的知識(shí)點(diǎn)為不定積分的第一換元積分法(湊微分法).

由題設(shè)知∫f(x)dx=F(x)+C,因此

可知應(yīng)選D.

45.D

46.B,可知應(yīng)選B。

47.C

48.C

49.A解析:績效評估的步驟:(1)確定特定的績效評估目標(biāo);(2)確定考評責(zé)任者;(3)評價(jià)業(yè)績;(4)公布考評結(jié)果,交流考評意見;(5)根據(jù)考評結(jié)論,將績效評估的結(jié)論備案。

50.D

51.e

52.用變上限積分公式(∫0xf(t)dt)"=f(x),則Ф"(x)=ln(1+x),Ф"(x)=。

53.

本題考查的知識(shí)點(diǎn)為函數(shù)商的求導(dǎo)運(yùn)算.

考生只需熟記導(dǎo)數(shù)運(yùn)算的法則

54.當(dāng)x→0時(shí),-1與x2等價(jià),應(yīng)滿足所以當(dāng)a=2時(shí)是等價(jià)的。

55.

解析:

56.

57.0

58.

59.以O(shè)z為軸的圓柱面方程。F(x,y)=0表示母線平行于Oz軸的柱面,稱之為柱面方程,方程x2+y2=32=0表示母線平行Oz軸的圓柱面方程。

60.

61.

本題考查的知識(shí)點(diǎn)為冪級數(shù)的收斂半徑.

注意此處冪級數(shù)為缺項(xiàng)情形.

62.3

63.π/2π/2解析:

64.本題考查的知識(shí)點(diǎn)為判定函數(shù)的間斷點(diǎn).

僅當(dāng),即x=±1時(shí),函數(shù)沒有定義,因此x=±1為函數(shù)的間斷點(diǎn)。

65.

66.tanθ-cotθ+C

67.3e3x3e3x

解析:

68.(-2,2);本題考查的知識(shí)點(diǎn)為冪級數(shù)的收斂區(qū)間.

由于所給級數(shù)為不缺項(xiàng)情形,

可知收斂半徑,收斂區(qū)間為(-2,2).

69.

70.

71.

72.

73.函數(shù)的定義域?yàn)?/p>

注意

74.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

75.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,

76.

77.由等價(jià)無窮小量的定義可知

78.

79.

80.

81.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

82.

83.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論