




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
Lecture1Introductiontoknowledge-baseintelligentsystemsIntelligentmachines,orwhatmachinescandoThehistoryofartificialintelligenceorfromthe“DarkAges”toknowledge-basedsystemsSummaryIntelligentmachines,orwhatmachinescandoPhilosophershavebeentryingforover2000yearstounderstandandresolvetwoBigQuestionsoftheUniverse:Howdoesahumanmindwork,andCannon-humanshaveminds?Thesequestionsarestillunanswered.Intelligenceistheabilitytounderstandandlearnthings.2Intelligenceistheabilitytothinkandunderstandinsteadofdoingthingsbyinstinctorautomatically. (EssentialEnglishDictionary,Collins,London,1990)Inordertothink,someoneorsomethinghastohaveabrain,oranorganthatenablessomeoneorsomethingtolearnandunderstandthings,tosolveproblemsandtomakedecisions.Sowecandefineintelligenceastheabilitytolearnandunderstand,tosolveproblemsandtomakedecisions.Thegoalofartificialintelligence(AI)asascienceistomakemachinesdothingsthatwouldrequireintelligenceifdonebyhumans.Therefore,theanswertothequestionCanMachinesThink?wasvitallyimportanttothediscipline.Theanswerisnotasimple“Yes”or“No”.Somepeoplearesmarterinsomewaysthanothers.Sometimeswemakeveryintelligentdecisionsbutsometimeswealsomakeverysillymistakes.Someofusdealwithcomplexmathematicalandengineeringproblemsbutaremoronicinphilosophyandhistory.Somepeoplearegoodatmakingmoney,whileothersarebetteratspendingit.Ashumans,weallhavetheabilitytolearnandunderstand,tosolveproblemsandtomakedecisions;however,ourabilitiesarenotequalandlieindifferentareas.Therefore,weshouldexpectthatifmachinescanthink,someofthemmightbesmarterthanothersinsomeways.Oneofthemostsignificantpapersonmachineintelligence,“ComputingMachineryandIntelligence”,waswrittenbytheBritishmathematicianAlanTuringoverfiftyyearsago.However,itstillstandsupwellunderthetestoftime,andtheTuring’sapproachremainsuniversal.Heasked:Istherethoughtwithoutexperience?Istheremindwithoutcommunication?Istherelanguagewithoutliving?Isthereintelligencewithoutlife?Allthesequestions,asyoucansee,arejustvariationsonthefundamentalquestionofartificialintelligence,Canmachinesthink?Turingdidnotprovidedefinitionsofmachinesandthinking,hejustavoidedsemanticargumentsbyinventingagame,theTuringImitationGame.Theimitationgameoriginallyincludedtwophases.Inthefirstphase,theinterrogator,amanandawomanareeachplacedinseparaterooms.Theinterrogator’sobjectiveistoworkoutwhoisthemanandwhoisthewomanbyquestioningthem.Themanshouldattempttodeceivetheinterrogatorthatheisthewoman,whilethewomanhastoconvincetheinterrogatorthatsheisthewoman.TuringImitationGame:Phase1TuringImitationGame:Phase2Inthesecondphaseofthegame,themanisreplacedbyacomputerprogrammedtodeceivetheinterrogatorasthemandid.Itwouldevenbeprogrammedtomakemistakesandprovidefuzzyanswersinthewayahumanwould.Ifthecomputercanfooltheinterrogatorasoftenasthemandid,wemaysaythiscomputerhaspassedtheintelligentbehaviourtest.TuringImitationGame:Phase2
TheTuringtesthastworemarkablequalitiesthatmakeitreallyuniversal.Bymaintainingcommunicationbetweenthehumanandthemachineviaterminals,thetestgivesusanobjectivestandardviewonintelligence.Thetestitselfisquiteindependentfromthedetailsoftheexperiment.Itcanbeconductedasatwo-phasegame,orevenasasingle-phasegamewhentheinterrogatorneedstochoosebetweenthehumanandthemachinefromthebeginningofthetest.Turingbelievedthatbytheendofthe20thcenturyitwouldbepossibletoprogramadigitalcomputertoplaytheimitationgame.AlthoughmoderncomputersstillcannotpasstheTuringtest,itprovidesabasisfortheverificationandvalidationofknowledge-basedsystems.Aprogramthoughtintelligentinsomenarrowareaofexpertiseisevaluatedbycomparingitsperformancewiththeperformanceofahumanexpert.Tobuildanintelligentcomputersystem,wehavetocapture,organiseandusehumanexpertknowledgeinsomenarrowareaofexpertise.ThehistoryofartificialintelligenceThefirstworkrecognisedinthefieldofAIwaspresentedbyWarrenMcCullochandWalterPittsin1943.Theyproposedamodelofanartificialneuralnetworkanddemonstratedthatsimplenetworkstructurescouldlearn.McCulloch,thesecond“foundingfather”ofAIafterAlanTuring,hadcreatedthecornerstoneofneuralcomputingandartificialneuralnetworks(ANN).Thebirthofartificialintelligence(1943–1956)ThethirdfounderofAIwasJohnvonNeumann,thebrilliantHungarian-bornmathematician.In1930,hejoinedthePrincetonUniversity,lecturinginmathematicalphysics.HewasanadviserfortheElectronicNumericalIntegratorandCalculatorprojectattheUniversityofPennsylvaniaandhelpedtodesigntheElectronicDiscreteVariableCalculator.HewasinfluencedbyMcCullochandPitts’sneuralnetworkmodel.WhenMarvinMinskyandDeanEdmonds,twograduatestudentsinthePrincetonmathematicsdepartment,builtthefirstneuralnetworkcomputerin1951,vonNeumannencouragedandsupportedthem.AnotherofthefirstgenerationresearcherswasClaudeShannon.HegraduatedfromMITandjoinedBellTelephoneLaboratoriesin1941.ShannonsharedAlanTuring’’sideasonthepossibilityofmachineintelligence.In1950,hepublishedapaperonchess-playingmachines,whichpointedoutthatatypicalchessgameinvolvedabout10120possiblemoves(Shannon,1950).EvenifthenewvonNeumann-typecomputercouldexamineonemovepermicrosecond,itwouldtake310106yearstomakeitsfirstmove.ThusShannondemonstratedtheneedtouseheuristicsinthesearchforthesolution.In1956,JohnMcCarthy,MartinMinskyandClaudeShannonorganisedasummerworkshopatDartmouthCollege.Theybroughttogetherresearchersinterestedinthestudyofmachineintelligence,artificialneuralnetsandautomatatheory.Althoughtherewerejusttenresearchers,thisworkshopgavebirthtoanewsciencecalledartificialintelligence.Theriseofartificialintelligence,ortheeraofgreatexpectations(1956––late1960s)TheearlyworksonneuralcomputingandartificialneuralnetworksstartedbyMcCullochandPittswascontinued.LearningmethodswereimprovedandFrankRosenblattprovedtheperceptronconvergencetheorem,demonstratingthathislearningalgorithmcouldadjusttheconnectionstrengthsofaperceptron.OneofthemostambitiousprojectsoftheeraofgreatexpectationswastheGeneralProblemSolver(GPS).AllenNewellandHerbertSimonfromtheCarnegieMellonUniversitydevelopedageneral-purposeprogramtosimulatehuman-solvingmethods.NewellandSimonpostulatedthataproblemtobesolvedcouldbedefinedintermsofstates.Theyusedthemean-endanalysistodetermineadifferencebetweenthecurrentanddesirableorgoalstateoftheproblem,andtochooseandapplyoperatorstoreachthegoalstate.Thesetofoperatorsdeterminedthesolutionplan.However,GPSfailedtosolvecomplexproblems.Theprogramwasbasedonformallogicandcouldgenerateaninfinitenumberofpossibleoperators.TheamountofcomputertimeandmemorythatGPSrequiredtosolvereal-worldproblemsledtotheprojectbeingabandoned.Inthesixties,AIresearchersattemptedtosimulatethethinkingprocessbyinventinggeneralmethodsforsolvingbroadclassesofproblems.Theyusedthegeneral-purposesearchmechanismtofindasolutiontotheproblem.Suchapproaches,nowreferredtoasweakmethods,appliedweakinformationabouttheproblemdomain.By1970,theeuphoriaaboutAIwasgone,andmostgovernmentfundingforAIprojectswascancelled.AIwasstillarelativelynewfield,academicinnature,withfewpracticalapplicationsapartfromplayinggames.So,totheoutsider,theachievedresultswouldbeseenastoys,asnoAIsystematthattimecouldmanagereal-worldproblems.Unfulfilledpromises,ortheimpactofreality(late1960s–early1970s)ThemaindifficultiesforAIinthelate1960swere:BecauseAIresearchersweredevelopinggeneralmethodsforbroadclassesofproblems,earlyprogramscontainedlittleorevennoknowledgeaboutaproblemdomain.Tosolveproblems,programsappliedasearchstrategybytryingoutdifferentcombinationsofsmallsteps,untiltherightonewasfound.Thisapproachwasquitefeasibleforsimpletoyproblems,soitseemedreasonablethat,iftheprogramscouldbe“scaledup”tosolvelargeproblems,theywouldfinallysucceed.ManyoftheproblemsthatAIattemptedtosolveweretoobroadandtoodifficult.AtypicaltaskforearlyAIwasmachinetranslation.Forexample,theNationalResearchCouncil,USA,fundedthetranslationofRussianscientificpapersafterthelaunchofthefirstartificialsatellite(Sputnik)in1957.Initially,theprojectteamtriedsimplyreplacingRussianwordswithEnglish,usinganelectronicdictionary.However,itwassoonfoundthattranslationrequiresageneralunderstandingofthesubjecttochoosethecorrectwords.Thistaskwastoodifficult.In1966,alltranslationprojectsfundedbytheUSgovernmentwerecancelled.In1971,theBritishgovernmentalsosuspendedsupportforAIresearch.SirJamesLighthillhadbeencommissionedbytheScienceResearchCouncilofGreatBritaintoreviewthecurrentstateofAI.HedidnotfindanymajororevensignificantresultsfromAIresearch,andthereforesawnoneedtohaveaseparatesciencecalled““artificialintelligence””.Thetechnologyofexpertsystems,orthekeytosuccess(early1970s––mid-1980s)Probablythemostimportantdevelopmentintheseventieswastherealisationthatthedomainforintelligentmachineshadtobesufficientlyrestricted.Previously,AIresearchershadbelievedthatcleversearchalgorithmsandreasoningtechniquescouldbeinventedtoemulategeneral,human-like,problem-solvingmethods.Ageneral-purposesearchmechanismcouldrelyonelementaryreasoningstepstofindcompletesolutionsandcoulduseweakknowledgeaboutdomain.Whenweakmethodsfailed,researchersfinallyrealisedthattheonlywaytodeliverpracticalresultswastosolvetypicalcasesinnarrowareasofexpertise,makinglargereasoningsteps.DENDRALDENDRALwasdevelopedatStanfordUniversitytodeterminethemolecularstructureofMartiansoil,basedonthemassspectraldataprovidedbyamassspectrometer.TheprojectwassupportedbyNASA.EdwardFeigenbaum,BruceBuchanan(acomputerscientist)andJoshuaLederberg(aNobelprizewinneringenetics)formedateam.Therewasnoscientificalgorithmformappingthemassspectrumintoitsmolecularstructure.Feigenbaum’’sjobwastoincorporatetheexpertiseofLederbergintoacomputerprogramtomakeitperformatahumanexpertlevel.Suchprogramswerelatercalledexpertsystems.DENDRALmarkedamajor““paradigmshift””inAI:ashiftfromgeneral-purpose,knowledge-sparseweakmethodstodomain-specific,knowledge-intensivetechniques.Theaimoftheprojectwastodevelopacomputerprogramtoattainthelevelofperformanceofanexperiencedhumanchemist.Usingheuristicsintheformofhigh-qualityspecificrules,rules-of-thumb,theDENDRALteamprovedthatcomputerscouldequalanexpertinnarrow,welldefined,problemareas.TheDENDRALprojectoriginatedthefundamentalideaofexpertsystems–knowledgeengineering,whichencompassedtechniquesofcapturing,analysingandexpressinginrulesanexpert’’s“know-how””.MYCINwasarule-basedexpertsystemforthediagnosisofinfectiousblooddiseases.Italsoprovidedadoctorwiththerapeuticadviceinaconvenient,user-friendlymanner.MYCIN’sknowledgeconsistedofabout450rulesderivedfromhumanknowledgeinanarrowdomainthroughextensiveinterviewingofexperts.Theknowledgeincorporatedintheformofruleswasclearlyseparatedfromthereasoningmechanism.Thesystemdevelopercouldeasilymanipulateknowledgeinthesystembyinsertingordeletingsomerules.Forexample,adomain-independentversionofMYCINcalledEMYCIN(EmptyMYCIN)waslaterproduced.MYCINPROSPECTORwasanexpertsystemformineralexplorationdevelopedbytheStanfordResearchInstitute.Nineexpertscontributedtheirknowledgeandexpertise.PROSPECTORusedacombinedstructurethatincorporatedrulesandasemanticnetwork.PROSPECTORhadover1000rules.Theuser,anexplorationgeologist,wasaskedtoinputthecharacteristicsofasuspecteddeposit:thegeologicalsetting,structures,kindsofrocksandminerals.PROSPECTORcomparedthesecharacteristicswithmodelsoforedepositsandmadeanassessmentofthesuspectedmineraldeposit.Itcouldalsoexplainthestepsitusedtoreachtheconclusion.PROSPECTORA1986surveyreportedaremarkablenumberofsuccessfulexpertsystemapplicationsindifferentareas:chemistry,electronics,engineering,geology,management,medicine,processcontrolandmilitaryscience(Waterman,1986).AlthoughWatermanfoundnearly200expertsystems,mostoftheapplicationswereinthefieldofmedicaldiagnosis.Sevenyearslaterasimilarsurveyreportedover2500developedexpertsystems(Durkin,1994).Thenewgrowingareawasbusinessandmanufacturing,whichaccountedforabout60%oftheapplications.Expertsystemtechnologyhadclearlymatured.However:Expertsystemsarerestrictedtoaverynarrowdomainofexpertise.Forexample,MYCIN,whichwasdevelopedforthediagnosisofinfectiousblooddiseases,lacksanyrealknowledgeofhumanphysiology.Ifapatienthasmorethanonedisease,wecannotrelyonMYCIN.Infact,therapyprescribedfortheblooddiseasemightevenbeharmfulbecauseoftheotherdisease.Expertsystemscanshowthesequenceoftherulestheyappliedtoreachasolution,butcannotrelateaccumulated,heuristicknowledgetoanydeeperunderstandingoftheproblemdomain.Expertsystemshavedifficultyinrecognisingdomainboundaries.Whengivenataskdifferentfromthetypicalproblems,anexpertsystemmightattempttosolveitandfailinratherunpredictableways.Heuristicrulesrepresentknowledgeinabstractformandlackevenbasicunderstandingofthedomainarea.Itmakesthetaskofidentifyingincorrect,incompleteorinconsistentknowledgedifficult.Expertsystems,especiallythefirstgeneration,havelittleornoabilitytolearnfromtheirexperience.Expertsystemsarebuiltindividuallyandcannotbedevelopedfast.Complexsystemscantakeover30person-yearstobuild.Howtomakeamachinelearn,ortherebirthofneuralnetworks(mid-1980s–onwards)Inthemid-eighties,researchers,engineersandexpertsfoundthatbuildinganexpertsystemrequiredmuchmorethanjustbuyingareasoningsystemorexpertsystemshellandputtingenoughrulesinit.DisillusionsabouttheapplicabilityofexpertsystemtechnologyevenledtopeoplepredictinganAI““winter””withseverelysqueezedfundingforAIprojects.AIresearchersdecidedtohaveanewlookatneuralnetworks.Bythelatesixties,mostofthebasicideasandconceptsnecessaryforneuralcomputinghadalreadybeenformulated.However,onlyinthemid-eightiesdidthesolutionemerge.Themajorreasonforthedelaywastechnological:therewerenoPCsorpowerfulworkstationstomodelandexperimentwithartificialneuralnetworks.Intheeighties,becauseoftheneedforbrain-likeinformationprocessing,aswellastheadvancesincomputertechnologyandprogressinneuroscience,thefieldofneuralnetworksexperiencedadramaticresurgence.Majorcontributionstoboththeoryanddesignweremadeonseveralfronts.Grossbergestablishedanewprincipleofself-organisation(adaptiveresonancetheory),whichprovidedthebasisforanewclassofneuralnetworks(Grossberg,1980).Hopfieldintroducedneuralnetworkswithfeedback––Hopfieldnetworks,whichattractedmuchattentionintheeighties(Hopfield,1982).Kohonenpublishedapaperonself-organisingmaps(Kohonen,1982).Barto,SuttonandAndersonpublishedtheirworkonreinforcementlearninganditsapplicationincontrol(Bartoetal.,1983).Buttherealbreakthroughcamein1986whentheback-propagationlearningalgorithm,firstintroducedbyBrysonandHoin1969(Bryson&Ho,1969),wasreinventedbyRumelhartandMcClellandinParallelDistributedProcessing(1986).ArtificialneuralnetworkshavecomealongwayfromtheearlymodelsofMcCullochandPittstoaninterdisciplinarysubjectwithrootsinneuroscience,psychology,mathematicsandengineering,andwillcontinuetodevelopinboththeoryandpracticalapplications.Theneweraofknowledgeengineering,orcomputingwithwords(late1980s–onwards)Neuralnetworktechnologyoffersmorenaturalinteractionwiththerealworldthandosystemsbasedonsymbolicreasoning.Neuralnetworkscanlearn,adapttochangesinaproblem’’senvironment,establishpatternsinsituationswhererulesarenotknown,anddealwithfuzzyorincompleteinformation.However,theylackexplanationfacilitiesandusuallyactasablackbox.Theprocessoftrainingneuralnetworkswithcurrenttechnologiesisslow,andfrequentretrainingcancauseseriousdifficulties.Classicexpertsystemsareespeciallygoodforclosed-systemapplicationswithpreciseinputsandlogicaloutputs.Theyuseexpertknowledgeintheformofrulesand,ifrequired,caninteractwiththeusertoestablishaparticularfact.Amajordrawbackisthathumanexpertscannotalwaysexpresstheirknowledgeintermsofrulesorexplainthelineoftheirreasoning.Thiscanpreventtheexpertsystemfromaccumulatingthenecessaryknowledge,andconsequentlyleadtoitsfailure.Veryimportanttechnologydealingwithvague,impreciseanduncertainknowledgeanddataisfuzzylogic.Humanexpertsdonotusuallythinkinprobabilityvalues,butinsuchtermsasoften,generally,sometimes,occasionallyandrarely.Fuzzylogicisconcernedwithcapturingthemeaningofwords,humanreasoninganddecisionmaking.Fuzzylogicprovidesthewaytobreakthroughthecomputationalbottlenecksoftraditionalexpertsystems.Attheheartoffuzzylogicliestheconceptofalinguisticvariable.Thevaluesofthelinguisticvariablearewordsratherthannumbers.FuzzylogicorfuzzysettheorywasintroducedbyProfessorLotfiZadeh,Berkeley’’selectricalengineeringdepartmentchairman,in1965.Itprovidedameansofcomputingwithwords.However,acceptanceoffuzzysettheorybythetechnicalcommunitywasslowanddifficult.Partoftheproblemwastheprovocativename––““fuzzy””––itseemedtoolight-heartedtobetakenseriously.Eventually,fuzzytheory,ignoredintheWest,wastakenseriouslyintheEast––bytheJapanese.Ithasbeenusedsuccessfullysince1987inJapanese-designeddishwashers,washingmachines,airconditioners,televisionsets,copiers,andevencars.Benefitsderivedfromtheapplicationoffuzzylogicmodelsinknowledge-basedanddecision-supportsystemscanbesummarisedasfollows:Improvedcomputationalpower:Fuzzyrule-basedsystemsperformfasterthanconventionalexpertsystemsandrequirefewerrules.Afuzzyexpertsystemmergestherules,makingthemmorepowerful.LotfiZadehbelievesthatinafewyearsmostexpertsystemswillusefuzzylogictosolvehighlynonlinearandcomputationallydifficultproblems.Improvedcognitivemodelling:Fuzzysystemsallowtheencodingofknowledgeinaformthatreflectsthewayexpertsthinkaboutacomplexproblem.Theyusuallythinkinsuchimprecisetermsashighandlow,fastandslow,heavyandlight.Inordertobuildconventionalrules,weneedtodefinethecrispboundariesforthesetermsbybreakingdowntheexpertiseintofragments.Thisfragmentationleadstothepoorperformanceofconventionalexpertsystemswhentheydealwithcomplexproblems.Incontrast,fuzzyexpertsystemsmodelimpreciseinformation,capturingexpertisesimilartothewayitisrepresentedintheexpertmind,andthusimprovecogniti
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 安全工程師職業(yè)發(fā)展指導試題及答案
- 水管流水測試題及答案
- 新能源汽車市場的品牌差異化策略試題及答案
- 新零售趨勢下實體零售門店線上線下融合營銷策略研究報告
- 黃埔招教面試真題及答案
- 食品添加劑安全評估與2025年食品加工工藝改進研究報告
- 2025年消防安全考試題及答案
- 社交廢物面試題及答案
- 深度分析:2025年環(huán)境監(jiān)測行業(yè)智能化發(fā)展與數(shù)據(jù)質(zhì)量控制創(chuàng)新
- 快遞網(wǎng)管面試題及答案
- DL-T+1860-2018自動電壓控制試驗技術導則
- 單螺桿泵說明書
- JT-T-1213-2018陸港設施設備配置和運營技術規(guī)范
- 五年級勞動課件收納
- 行政復議法-形考作業(yè)2-國開(ZJ)-參考資料
- 2023-2024學年人教版數(shù)學八年級下冊期中復習卷
- (高清版)TDT 1044-2014 生產(chǎn)項目土地復墾驗收規(guī)程
- MBA-組織行為學課件
- 白云枕頭-模板參考
- 奧迪汽車介紹
- 心衰超濾治療
評論
0/150
提交評論