版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023年內(nèi)蒙古自治區(qū)呼和浩特市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(20題)1.
2.
A.
B.
C.
D.
3.
4.
5.已知函數(shù)f(x)的定義域是[一1,1],則f(x一1)的定義域?yàn)?)。
A.[一1,1]B.[0,2]C.[0,1]D.[1,2]6.A.A.
B.
C.
D.不能確定
7.A.A.1/3B.3/4C.4/3D.38.
9.設(shè)y=3+sinx,則y=()A.-cosxB.cosxC.1-cosxD.1+cosx10.設(shè)y=sin2x,則y'=A.A.2cosxB.cos2xC.2cos2xD.cosx
11.構(gòu)件承載能力不包括()。
A.強(qiáng)度B.剛度C.穩(wěn)定性D.平衡性
12.
13.
14.微分方程y'=1的通解為A.y=xB.y=CxC.y=C-xD.y=C+x
15.
16.A.(1/3)x3
B.x2
C.2xD.(1/2)x17.A.A.-3/2B.3/2C.-2/3D.2/318.在空間中,方程y=x2表示()A.xOy平面的曲線B.母線平行于Oy軸的拋物柱面C.母線平行于Oz軸的拋物柱面D.拋物面
19.
20.
二、填空題(20題)21.
22.
23.
24.
25.26.
27.設(shè)sinx為f(x)的原函數(shù),則f(x)=________。
28.
29.設(shè)函數(shù)z=x2ey,則全微分dz=______.
30.31.∫(x2-1)dx=________。32.
33.
34.設(shè)是收斂的,則后的取值范圍為______.
35.
36.
37.
38.39.微分方程y"-y'-2y=0的通解為______.
40.三、計(jì)算題(20題)41.
42.43.44.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則45.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.46.
47.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).48.
49.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?
50.
51.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
52.53.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
54.求微分方程y"-4y'+4y=e-2x的通解.
55.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.56.求曲線在點(diǎn)(1,3)處的切線方程.57.求微分方程的通解.58.證明:59.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.60.將f(x)=e-2X展開為x的冪級數(shù).四、解答題(10題)61.62.求方程y''2y'+5y=ex的通解.
63.求由曲線y2=(x-1)3和直線x=2所圍成的圖形繞x軸旋轉(zhuǎn)所得的旋轉(zhuǎn)體的體積.
64.
65.
66.
67.68.求,其中區(qū)域D是由曲線y=1+x2與y=0,x=0,x=1所圍成.
69.
70.
五、高等數(shù)學(xué)(0題)71.求y=ln(x2+1)的凹凸區(qū)間,拐點(diǎn)。
六、解答題(0題)72.
參考答案
1.A
2.B本題考查的知識點(diǎn)為交換二次積分次序。由所給二次積分可知積分區(qū)域D可以表示為1≤y≤2,y≤x≤2,交換積分次序后,D可以表示為1≤x≤2,1≤y≤x,故應(yīng)選B。
3.C解析:
4.D
5.B∵一1≤x一1≤1∴0≤x≤2。
6.B
7.B
8.C
9.B
10.C由鏈?zhǔn)椒▌t可得(sin2x)'=cos2x*(2x)'=2cos2x,故選C。
11.D
12.D
13.C
14.D
15.A
16.C本題考查了一元函數(shù)的一階導(dǎo)數(shù)的知識點(diǎn)。
Y=x2+1,(dy)/(dx)=2x
17.A
18.C方程F(x,y)=0表示母線平行于Oz軸的柱面,稱之為柱面方程,故選C。
19.D
20.C解析:
21.
22.發(fā)散
23.y=1y=1解析:
24.0
25.
26.本題考查的知識點(diǎn)為:求解可分離變量的微分方程.
27.0因?yàn)閟inx為f(x)的一個原函數(shù),所以f(x)=(sinx)"=cosx,f"(x)=-sinx。
28.tanθ-cotθ+C
29.dz=2xeydx+x2eydy
30.e-2
31.
32.
33.34.k>1本題考查的知識點(diǎn)為廣義積分的收斂性.
由于存在,可知k>1.
35.
36.
37.y+3x2+x
38.39.y=C1e-x+C2e2x本題考查的知識點(diǎn)為二階線性常系數(shù)微分方程的求解.
特征方程為r2-r-2=0,
特征根為r1=-1,r2=2,
微分方程的通解為y=C1e-x+C2ex.
40.
41.
42.
43.
44.由等價無窮小量的定義可知
45.
46.由一階線性微分方程通解公式有
47.
列表:
說明
48.
則
49.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時,價格上漲1%需求量減少2.5%
50.
51.
52.
53.由二重積分物理意義知
54.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
55.函數(shù)的定義域?yàn)?/p>
注意
56.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
57.
58.
59.
60.
61.
62.
63.注:本題關(guān)鍵是確定積分區(qū)間,曲線為y2=(x-1)3.由y2≥0知x-1≥0即x≥1,又與直線x=2所圍成的圖形,所以積分區(qū)間為[1,2].
64.
65.
66.
67.68.積分區(qū)域D如圖1-4所示。D可以表示為0≤x≤1,0≤y≤1+x2本題考查的知識點(diǎn)為計(jì)算二重積分,選擇積分次序。如果將二重積分化為先對x后對y的積分,將變得復(fù)雜,因此考生應(yīng)該學(xué)會選擇合適的積分
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度光伏產(chǎn)品模具研發(fā)制造合同4篇
- 2025年度寵物用品跨境電商合作合同4篇
- 2025年度環(huán)保工程派遣員工勞動合同樣本4篇
- 2025版綿陽市醫(yī)療機(jī)構(gòu)租賃合同4篇
- 2025年度城市綜合體施工合同(含裝修工程)2篇
- 2025年美團(tuán)外賣騎手服務(wù)區(qū)域劃分合同
- 2025年冷鏈物流送貨員專業(yè)培訓(xùn)及聘用合同
- 二零二五年度農(nóng)業(yè)產(chǎn)業(yè)鏈借貸合同協(xié)議
- 二零二五年度太陽能光伏電站設(shè)備保險與理賠合同
- 2025年度智能家居租賃運(yùn)營合同3篇
- 柴油墊資合同模板
- 湖北省五市州2023-2024學(xué)年高一下學(xué)期期末聯(lián)考數(shù)學(xué)試題
- 城市作戰(zhàn)案例研究報告
- 【正版授權(quán)】 ISO 12803:1997 EN Representative sampling of plutonium nitrate solutions for determination of plutonium concentration
- 道德經(jīng)全文及注釋
- 2024中考考前地理沖刺卷及答案(含答題卡)
- 多子女贍養(yǎng)老人協(xié)議書范文
- 安踏運(yùn)動品牌營銷策略研究
- 彩票市場銷售計(jì)劃書
- 骨科抗菌藥物應(yīng)用分析報告
- 支付行業(yè)反洗錢與反恐怖融資
評論
0/150
提交評論