版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年內(nèi)蒙古自治區(qū)通遼市成考專(zhuān)升本高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(50題)1.
2.績(jī)效評(píng)估的第一個(gè)步驟是()
A.確定特定的績(jī)效評(píng)估目標(biāo)B.確定考評(píng)責(zé)任者C.評(píng)價(jià)業(yè)績(jī)D.公布考評(píng)結(jié)果,交流考評(píng)意見(jiàn)
3.
4.設(shè)f'(x)=1+x,則f(x)等于().A.A.1
B.X+X2+C
C.x++C
D.2x+x2+C
5.
等于().
6.A.A.
B.e
C.e2
D.1
7.
8.
9.
10.=()。A.
B.
C.
D.
11.設(shè)y=2x,則dy=A.A.x2x-1dx
B.2xdx
C.(2x/ln2)dx
D.2xln2dx
12.
13.建立共同愿景屬于()的管理觀念。
A.科學(xué)管理B.企業(yè)再造C.學(xué)習(xí)型組織D.目標(biāo)管理
14.下列命題中正確的為
A.若x0為f(x)的極值點(diǎn),則必有f'(x0)=0
B.若f'(x)=0,則點(diǎn)x0必為f(x)的極值點(diǎn)
C.若f'(x0)≠0,則點(diǎn)x0必定不為f(x)的極值點(diǎn)
D.若f(x)在點(diǎn)x0處可導(dǎo),且點(diǎn)x0為f(x)的極值點(diǎn),則必有f'(x0)=0
15.
16.
17.已知斜齒輪上A點(diǎn)受到另一齒輪對(duì)它作用的捏合力Fn,F(xiàn)n沿齒廓在接觸處的公法線方向,且垂直于過(guò)A點(diǎn)的齒面的切面,如圖所示,α為壓力角,β為斜齒輪的螺旋角。下列關(guān)于一些力的計(jì)算有誤的是()。
A.圓周力FT=Fncosαcosβ
B.徑向力Fa=Fncosαcosβ
C.軸向力Fr=Fncosα
D.軸向力Fr=Fnsinα
18.
19.下列關(guān)于構(gòu)建的幾何形狀說(shuō)法不正確的是()。
A.軸線為直線的桿稱(chēng)為直桿B.軸線為曲線的桿稱(chēng)為曲桿C.等截面的直桿稱(chēng)為等直桿D.橫截面大小不等的桿稱(chēng)為截面桿20.設(shè)函數(shù)f(x)=2sinx,則f'(x)等于().A.A.2sinxB.2cosxC.-2sinxD.-2cosx.
21.前饋控制、同期控制和反饋控制劃分的標(biāo)準(zhǔn)是()
A.按照時(shí)機(jī)、對(duì)象和目的劃分B.按照業(yè)務(wù)范圍劃分C.按照控制的順序劃分D.按照控制對(duì)象的全面性劃分
22.
23.A.A.充分非必要條件B.必要非充分條件C.充分必要條件D.無(wú)關(guān)條件
24.函數(shù)y=ex+arctanx在區(qū)間[-1,1]上()
A.單調(diào)減少B.單調(diào)增加C.無(wú)最大值D.無(wú)最小值25.A.A.1/3B.3/4C.4/3D.3
26.
27.
A.2x+1B.2xy+1C.x2+1D.2xy28.
29.
30.
31.等于()。A.-1B.-1/2C.1/2D.1
32.
33.二次積分等于()A.A.
B.
C.
D.
34.
35.
36.設(shè)函數(shù)f(x)=則f(x)在x=0處()A.可導(dǎo)B.連續(xù)但不可導(dǎo)C.不連續(xù)D.無(wú)定義37.設(shè)D={(x,y){|x2+y2≤a2,a>0,y≥0),在極坐標(biāo)下二重積分(x2+y2)dxdy可以表示為()A.∫0πdθ∫0ar2dr
B.∫0πdθ∫0ar3drC.D.
38.剛體上A、B、C、D四點(diǎn)組成一個(gè)平行四邊形,如在其四個(gè)頂點(diǎn)作用四個(gè)力,此四個(gè)邊恰好組成封閉的力多邊形。則()
A.力系平衡
B.力系有合力
C.力系的合力偶矩等于平行四邊形ABCD的面積
D.力系的合力偶矩等于負(fù)的平行四邊形ABCD的面積的2倍
39.
40.設(shè)函數(shù)f(x)在[a,b]上連續(xù),則曲線y=f(x)與直線x=a,x=b,y=0所圍成的平面圖形的面積等于()。A.
B.
C.
D.
41.()。A.2ex+C
B.ex+C
C.2e2x+C
D.e2x+C
42.函數(shù)f(x)=2x3-9x2+12x-3單調(diào)減少的區(qū)間為A.(-∞,1]B.[1,2]C.[2,+∞)D.[1,+∞)
43.
44.A.A.-sinx
B.cosx
C.
D.
45.
46.
47.A.
B.
C.
D.
48.
49.A.2/5B.0C.-2/5D.1/250.A.A.f(2)-f(0)
B.
C.
D.f(1)-f(0)
二、填空題(20題)51.
52.y=x3-27x+2在[1,2]上的最大值為_(kāi)_____.
53.
54.過(guò)點(diǎn)Mo(1,-1,0)且與平面x-y+3z=1平行的平面方程為_(kāi)______.
55.
56.57.
58.
59.60.
61.
62.
63.
64.
65.二階常系數(shù)齊次線性方程y"=0的通解為_(kāi)_________。
66.67.68.69.70.微分方程y''+y=0的通解是______.三、計(jì)算題(20題)71.
72.求微分方程y"-4y'+4y=e-2x的通解.
73.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).74.證明:75.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則76.
77.78.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.79.求曲線在點(diǎn)(1,3)處的切線方程.80.81.求微分方程的通解.82.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
83.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
84.
85.
86.87.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).88.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.89.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫(xiě)出S(x)的表達(dá)式;
(2)求S(x)的最大值.
90.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.四、解答題(10題)91.求曲線y=x2+1在點(diǎn)(1,2)處的切線方程.并求該曲線與所求切線及x=0所圍成的平面圖形的面積.
92.
93.94.95.
96.
97.
98.證明:ex>1+x(x>0).
99.
100.五、高等數(shù)學(xué)(0題)101.判定
的斂散性。
六、解答題(0題)102.
參考答案
1.A
2.A解析:績(jī)效評(píng)估的步驟:(1)確定特定的績(jī)效評(píng)估目標(biāo);(2)確定考評(píng)責(zé)任者;(3)評(píng)價(jià)業(yè)績(jī);(4)公布考評(píng)結(jié)果,交流考評(píng)意見(jiàn);(5)根據(jù)考評(píng)結(jié)論,將績(jī)效評(píng)估的結(jié)論備案。
3.C
4.C本題考查的知識(shí)點(diǎn)為不定積分的性質(zhì).
可知應(yīng)選C.
5.D解析:本題考查的知識(shí)點(diǎn)為牛頓一萊布尼茨公式和定積分的換元法.
因此選D.
6.C本題考查的知識(shí)點(diǎn)為重要極限公式.
7.A
8.A
9.C
10.D
11.Dy=2x,y'=2xln2,dy=y'dx=2xln2dx,故選D。
12.B
13.C解析:建立共同愿景屬于學(xué)習(xí)型組織的管理觀念。
14.D解析:由極值的必要條件知D正確。
y=|x|在x=0處取得極值,但不可導(dǎo),知A與C不正確。
y=x3在x=0處導(dǎo)數(shù)為0,但x0=0不為它的極值點(diǎn),可知B不正確。因此選D。
15.A解析:
16.D解析:
17.C
18.C
19.D
20.B本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的運(yùn)算.
f(x)=2sinx,
f'(x)=2(sinx)'=2cosx,
可知應(yīng)選B.
21.A解析:根據(jù)時(shí)機(jī)、對(duì)象和目的來(lái)劃分,控制可分為前饋控制、同期控制和反饋控制。
22.C解析:
23.D
24.B因處處成立,于是函數(shù)在(-∞,+∞)內(nèi)都是單調(diào)增加的,故在[-1,1]上單調(diào)增加.
25.B
26.B
27.B
28.D
29.D
30.C
31.C本題考查的知識(shí)點(diǎn)為定積分的運(yùn)算。
故應(yīng)選C。
32.C
33.A本題考查的知識(shí)點(diǎn)為交換二次積分的積分次序.
由所給二次積分限可知積分區(qū)域D的不等式表達(dá)式為:
0≤x≤1,0≤y≤1-x,
其圖形如圖1-1所示.
交換積分次序,D可以表示為
0≤y≤1,0≤x≤1-y,
因此
可知應(yīng)選A.
34.C解析:
35.C
36.A因?yàn)閒"(x)=故選A。
37.B因?yàn)镈:x2+y2≤a2,a>0,y≥0,令則有r2≤a2,0≤r≤a,0≤θ≤π,所以(x2+y2)dxdy=∫0πdθ∫0ar2.rdr=∫0πdθ∫0ar3.rdr故選B。
38.D
39.B
40.C
41.B
42.Bf(x)=2x3-9x2+12x-3的定義域?yàn)?-∞,+∞)
f'(x)=6x2-18x+12=6(x23x+2)=6(x-1)(x-2)。
令f'(x)=0得駐點(diǎn)x1=1,x2=2。
當(dāng)x<1時(shí),f'(x)>0,f(x)單調(diào)增加。
當(dāng)1<x<2時(shí),f'(x)<0,f(x)單調(diào)減少。
當(dāng)x>2時(shí),f'(x)>0,f(x)單調(diào)增加。因此知應(yīng)選B。
43.A解析:
44.C本題考查的知識(shí)點(diǎn)為基本導(dǎo)數(shù)公式.
可知應(yīng)選C.
45.A
46.D
47.A
48.D
49.A本題考查了定積分的性質(zhì)的知識(shí)點(diǎn)
50.C本題考查的知識(shí)點(diǎn)為牛頓一萊布尼茨公式和不定積分的性質(zhì).
可知應(yīng)選C.
51.6x252.-24本題考查的知識(shí)點(diǎn)為連續(xù)函數(shù)在閉區(qū)間上的最大值.
若f(x)在(a,b)內(nèi)可導(dǎo),在[a,b]上連續(xù),??梢岳脤?dǎo)數(shù)判定f(x)在[a,b]上的最值:
(1)求出f'(x).
(2)求出f(x)在(a,b)內(nèi)的駐點(diǎn)x1,…,xk.
(3)比較f(x1),f(x2),…,f(xk),f(a),f(b).其中最大(小)值為f(x)在[a,b]上的最大(小)值,相應(yīng)的點(diǎn)x為f(x)的最大(小)值點(diǎn).
y=x3-27x+2,
則y'=3x2-27=3(x-3)(x+3),
令y'=0得y的駐點(diǎn)x1=-3,x2=3,可知這兩個(gè)駐點(diǎn)都不在(1,2)內(nèi).
由于f(1)=-24,f(2)=-44,可知y=x3-27x+2在[1,2]上的最大值為-24.
本題考生中出現(xiàn)的錯(cuò)誤多為求出駐點(diǎn)x1=-3,x2=3之后,直接比較
f(-3)=56,f(3)=-52,f(1)=-24,f(2)=-44,
得出y=x3-27x+2在[1,2]上的最大值為f(-3)=56.其錯(cuò)誤的原因是沒(méi)有判定駐點(diǎn)x1=-3,x2=3是否在給定的區(qū)間(1,2)內(nèi),這是值得考生注意的問(wèn)題.在模擬試題中兩次出現(xiàn)這類(lèi)問(wèn)題,目的就是希望能引起考生的重視.
本題還可以采用下列解法:注意到y(tǒng)'=3(x-3)(x+3),在區(qū)間[1,2]上有y'<0,因此y為單調(diào)減少函數(shù)??芍?/p>
x=2為y的最小值點(diǎn),最小值為y|x=2=-44.
x=1為y的最大值點(diǎn),最大值為y|x=1=-24.
53.-2y-2y解析:54.由于已知平面的法線向量,所求平面與已知平面平行,可取所求平面法線向量,又平面過(guò)點(diǎn)Mo(1,-1,0),由平面的點(diǎn)法式方程可知,所求平面為
55.
56.
57.
58.x/1=y/2=z/-159.本題考查的知識(shí)點(diǎn)為重要極限公式。
60.
61.2xy(x+y)+3
62.yf''(xy)+f'(x+y)+yf''(x+y)
63.y=-x+1
64.
65.y=C1+C2x。
66.
67.
68.69.
本題考查的知識(shí)點(diǎn)為二階線性常系數(shù)齊次微分方程的求解.
二階線性常系數(shù)齊次微分方程求解的-般步驟為:先寫(xiě)出特征方程,求出特征根,再寫(xiě)出方程的通解.
70.y=C1cosx+C2sinx微分方程y''+y=0的特征方程是r2+1=0,故特征根為r=±i,所以方程的通解為y=C1cosx+C2sinx.
71.
72.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
73.
74.
75.由等價(jià)無(wú)窮小量的定義可知76.由一階線性微分方程通解公式有
77.
78.
79.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
80.
81.82.函數(shù)的定義域?yàn)?/p>
注意
83.需求規(guī)律為Q=100ep-2
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年滬科版五年級(jí)英語(yǔ)上冊(cè)階段測(cè)試試卷
- 2024年湘師大新版八年級(jí)數(shù)學(xué)上冊(cè)階段測(cè)試試卷
- 醫(yī)學(xué)研究中的儀器設(shè)備管理與保養(yǎng)技巧
- 醫(yī)學(xué)統(tǒng)計(jì)中的數(shù)學(xué)應(yīng)用與教育啟示
- 2025中國(guó)鐵路南寧局集團(tuán)限公司招聘36人(四)高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025中國(guó)日?qǐng)?bào)社招聘25人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025中冶集團(tuán)武漢勘察研究院招聘171人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025下半年湖南臨港開(kāi)發(fā)投資集團(tuán)限公司招聘16人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025下半年安徽宿州市市直事業(yè)單位招聘7人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025下半年四川綿陽(yáng)市梓潼縣事業(yè)單位招聘工作人員86人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 樓梯欄桿制作安裝合同范本
- 2022年佛山市教育局教學(xué)研究室招聘教研員筆試試題及答案
- 肯德基儲(chǔ)備經(jīng)理面試問(wèn)題及回答
- 2023年新版烏斯特統(tǒng)計(jì)公報(bào)即將發(fā)布
- 室外電氣工程施工組織設(shè)計(jì)方案
- 污水處理廠安全生產(chǎn)風(fēng)險(xiǎn)分級(jí)管控體系方案全套資料匯編完整版
- prs7910數(shù)據(jù)網(wǎng)關(guān)機(jī)技術(shù)使用說(shuō)明書(shū)
- 高危急性胸痛的快速診斷和誤診病案分析
- 全國(guó)英語(yǔ)等級(jí)考試三級(jí)全真模擬試題三
- 項(xiàng)目采購(gòu)招標(biāo)方案
- GB/T 40169-2021超高分子量聚乙烯(PE-UHMW)和高密度聚乙烯(PE-HD)模塑板材
評(píng)論
0/150
提交評(píng)論