版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022高考數(shù)學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在直三棱柱中,己知,,,則異面直線與所成的角為()A. B. C. D.2.對某兩名高三學生在連續(xù)9次數(shù)學測試中的成績(單位:分)進行統(tǒng)計得到折線圖,下面是關于這兩位同學的數(shù)學成績分析.①甲同學的成績折線圖具有較好的對稱性,故平均成績?yōu)?30分;②根據甲同學成績折線圖提供的數(shù)據進行統(tǒng)計,估計該同學平均成績在區(qū)間110,120內;③乙同學的數(shù)學成績與測試次號具有比較明顯的線性相關性,且為正相關;④乙同學連續(xù)九次測驗成績每一次均有明顯進步.其中正確的個數(shù)為()A.4 B.3 C.2 D.13.在中,角的對邊分別為,若,則的形狀為()A.直角三角形 B.等腰非等邊三角形C.等腰或直角三角形 D.鈍角三角形4.已知不重合的平面和直線,則“”的充分不必要條件是()A.內有無數(shù)條直線與平行 B.且C.且 D.內的任何直線都與平行5.如圖所示,已知雙曲線的右焦點為,雙曲線的右支上一點,它關于原點的對稱點為,滿足,且,則雙曲線的離心率是().A. B. C. D.6.已知,,,,則()A. B. C. D.7.命題:存在實數(shù),對任意實數(shù),使得恒成立;:,為奇函數(shù),則下列命題是真命題的是()A. B. C. D.8.已知復數(shù)是純虛數(shù),其中是實數(shù),則等于()A. B. C. D.9.“”是“直線與互相平行”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件10.已知集合A,則集合()A. B. C. D.11.下列函數(shù)中,在區(qū)間上單調遞減的是()A. B. C. D.12.已知橢圓的左、右焦點分別為,,上頂點為點,延長交橢圓于點,若為等腰三角形,則橢圓的離心率A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)是偶函數(shù),直線與函數(shù)的圖象自左向右依次交于四個不同點A,B,C,D.若AB=BC,則實數(shù)t的值為_________.14.直線(,)過圓:的圓心,則的最小值是______.15.《九章算術》是中國古代的數(shù)學名著,其中《方田》一章給出了弧田面積的計算公式.如圖所示,弧田是由圓弧AB和其所對弦AB圍成的圖形,若弧田的弧AB長為4π,弧所在的圓的半徑為6,則弧田的弦AB長是__________,弧田的面積是__________.16.已知向量,且,則實數(shù)的值是__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知為坐標原點,點,,,動點滿足,點為線段的中點,拋物線:上點的縱坐標為,.(1)求動點的軌跡曲線的標準方程及拋物線的標準方程;(2)若拋物線的準線上一點滿足,試判斷是否為定值,若是,求這個定值;若不是,請說明理由.18.(12分)若函數(shù)為奇函數(shù),且時有極小值.(1)求實數(shù)的值與實數(shù)的取值范圍;(2)若恒成立,求實數(shù)的取值范圍.19.(12分)選修4-4:坐標系與參數(shù)方程已知曲線的參數(shù)方程是(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程是.(1)寫出的極坐標方程和的直角坐標方程;(2)已知點、的極坐標分別為和,直線與曲線相交于,兩點,射線與曲線相交于點,射線與曲線相交于點,求的值.20.(12分)已知橢圓C的離心率為且經過點(1)求橢圓C的方程;(2)過點(0,2)的直線l與橢圓C交于不同兩點A、B,以OA、OB為鄰邊的平行四邊形OAMB的頂點M在橢圓C上,求直線l的方程.21.(12分)如圖,四棱錐V﹣ABCD中,底面ABCD是菱形,對角線AC與BD交于點O,VO⊥平面ABCD,E是棱VC的中點.(1)求證:VA∥平面BDE;(2)求證:平面VAC⊥平面BDE.22.(10分)在銳角中,,,分別是角,,所對的邊,的面積,且滿足,則的取值范圍是()A. B. C. D.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
由條件可看出,則為異面直線與所成的角,可證得三角形中,,解得從而得出異面直線與所成的角.【詳解】連接,,如圖:又,則為異面直線與所成的角.因為且三棱柱為直三棱柱,∴∴面,∴,又,,∴,∴,解得.故選C【點睛】考查直三棱柱的定義,線面垂直的性質,考查了異面直線所成角的概念及求法,考查了邏輯推理能力,屬于基礎題.2.C【解析】
利用圖形,判斷折線圖平均分以及線性相關性,成績的比較,說明正誤即可.【詳解】①甲同學的成績折線圖具有較好的對稱性,最高130分,平均成績?yōu)榈陀?30分,①錯誤;②根據甲同學成績折線圖提供的數(shù)據進行統(tǒng)計,估計該同學平均成績在區(qū)間[110,120]內,②正確;③乙同學的數(shù)學成績與測試次號具有比較明顯的線性相關性,且為正相關,③正確;④乙同學在這連續(xù)九次測驗中第四次、第七次成績較上一次成績有退步,故④不正確.故選:C.【點睛】本題考查折線圖的應用,線性相關以及平均分的求解,考查轉化思想以及計算能力,屬于基礎題.3.C【解析】
利用正弦定理將邊化角,再由,化簡可得,最后分類討論可得;【詳解】解:因為所以所以所以所以所以當時,為直角三角形;當時即,為等腰三角形;的形狀是等腰三角形或直角三角形故選:.【點睛】本題考查三角形形狀的判斷,考查正弦定理的運用,考查學生分析解決問題的能力,屬于基礎題.4.B【解析】
根據充分不必要條件和直線和平面,平面和平面的位置關系,依次判斷每個選項得到答案.【詳解】A.內有無數(shù)條直線與平行,則相交或,排除;B.且,故,當,不能得到且,滿足;C.且,,則相交或,排除;D.內的任何直線都與平行,故,若,則內的任何直線都與平行,充要條件,排除.故選:.【點睛】本題考查了充分不必要條件和直線和平面,平面和平面的位置關系,意在考查學生的綜合應用能力.5.C【解析】
易得,,又,平方計算即可得到答案.【詳解】設雙曲線C的左焦點為E,易得為平行四邊形,所以,又,故,,,所以,即,故離心率為.故選:C.【點睛】本題考查求雙曲線離心率的問題,關鍵是建立的方程或不等關系,是一道中檔題.6.D【解析】
令,求,利用導數(shù)判斷函數(shù)為單調遞增,從而可得,設,利用導數(shù)證出為單調遞減函數(shù),從而證出,即可得到答案.【詳解】時,令,求導,,故單調遞增:∴,當,設,,又,,即,故.故選:D【點睛】本題考查了作差法比較大小,考查了構造函數(shù)法,利用導數(shù)判斷式子的大小,屬于中檔題.7.A【解析】
分別判斷命題和的真假性,然后根據含有邏輯聯(lián)結詞命題的真假性判斷出正確選項.【詳解】對于命題,由于,所以命題為真命題.對于命題,由于,由解得,且,所以是奇函數(shù),故為真命題.所以為真命題.、、都是假命題.故選:A【點睛】本小題主要考查誘導公式,考查函數(shù)的奇偶性,考查含有邏輯聯(lián)結詞命題真假性的判斷,屬于基礎題.8.A【解析】
對復數(shù)進行化簡,由于為純虛數(shù),則化簡后的復數(shù)形式中,實部為0,得到的值,從而得到復數(shù).【詳解】因為為純虛數(shù),所以,得所以.故選A項【點睛】本題考查復數(shù)的四則運算,純虛數(shù)的概念,屬于簡單題.9.A【解析】
利用兩條直線互相平行的條件進行判定【詳解】當時,直線方程為與,可得兩直線平行;若直線與互相平行,則,解得,,則“”是“直線與互相平行”的充分不必要條件,故選【點睛】本題主要考查了兩直線平行的條件和性質,充分條件,必要條件的定義和判斷方法,屬于基礎題.10.A【解析】
化簡集合,,按交集定義,即可求解.【詳解】集合,,則.故選:A.【點睛】本題考查集合間的運算,屬于基礎題.11.C【解析】
由每個函數(shù)的單調區(qū)間,即可得到本題答案.【詳解】因為函數(shù)和在遞增,而在遞減.故選:C【點睛】本題主要考查常見簡單函數(shù)的單調區(qū)間,屬基礎題.12.B【解析】
設,則,,因為,所以.若,則,所以,所以,不符合題意,所以,則,所以,所以,,設,則,在中,易得,所以,解得(負值舍去),所以橢圓的離心率.故選B.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
由是偶函數(shù)可得時恒有,根據該恒等式即可求得,,的值,從而得到,令,可解得,,三點的橫坐標,根據可列關于的方程,解出即可.【詳解】解:因為是偶函數(shù),所以時恒有,即,所以,所以,解得,,;所以;由,即,解得;故,.由,即,解得.故,.因為,所以,即,解得,故答案為:.【點睛】本題考查函數(shù)奇偶性的性質及二次函數(shù)的圖象、性質,考查學生的計算能力,屬中檔題.14.;【解析】
求出圓心坐標,代入直線方程得的關系,再由基本不等式求得題中最小值.【詳解】圓:的標準方程為,圓心為,由題意,即,∴,當且僅當,即時等號成立,故答案為:.【點睛】本題考查用基本不等式求最值,考查圓的標準方程,解題方法是配方法求圓心坐標,“1”的代換法求最小值,目的是湊配出基本不等式中所需的“定值”.15.612π﹣9【解析】
過作,交于,先求得圓心角的弧度數(shù),然后解解三角形求得的長.利用扇形面積減去三角形的面積,求得弧田的面積.【詳解】∵如圖,弧田的弧AB長為4π,弧所在的圓的半徑為6,過作,交于,根據圓的幾何性質可知,垂直平分.∴α=∠AOB==,可得∠AOD=,OA=6,∴AB=2AD=2OAsin=2×=6,∴弧田的面積S=S扇形OAB﹣S△OAB=4π×6﹣=12π﹣9.故答案為:6,12π﹣9.【點睛】本小題主要考查弓形弦長和弓形面積的計算,考查中國古代數(shù)學文化,屬于中檔題.16.【解析】∵=(1,2),=(x,1),則=+2=(1,2)+2(x,1)=(1+2x,4),=2﹣=2(1,2)﹣(x,1)=(2﹣x,3),∵∴3(1+2x)﹣4(2﹣x)=1,解得:x=.點睛:由向量的數(shù)乘和坐標加減法運算求得,然后利用向量共線的坐標表示列式求解x的值.若=(a1,a2),=(b1,b2),則⊥?a1a2+b1b2=1,∥?a1b2﹣a2b1=1.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)曲線的標準方程為.拋物線的標準方程為.(2)見解析【解析】
(1)由題知|PF1|+|PF2|2|F1F2|,判斷動點P的軌跡W是橢圓,寫出橢圓的標準方程,根據平面向量數(shù)量積運算和點A在拋物線上求出拋物線C的標準方程;(2)設出點P的坐標,再表示出點N和Q的坐標,根據題意求出的值,即可判斷結果是否成立.【詳解】(1)由題知,,所以,因此動點的軌跡是以,為焦點的橢圓,又知,,所以曲線的標準方程為.又由題知,所以,所以,又因為點在拋物線上,所以,所以拋物線的標準方程為.(2)設,,由題知,所以,即,所以,又因為,,所以,所以為定值,且定值為1.【點睛】本題考查了圓錐曲線的定義與性質的應用問題,考查拋物線的幾何性質及點在曲線上的代換,也考查了推理與運算能力,是中檔題.18.(1),;(2)【解析】
(1)由奇函數(shù)可知在定義域上恒成立,由此建立方程,即可求出實數(shù)的值;對函數(shù)進行求導,,通過導數(shù)求出,若,則恒成立不符合題意,當,可證明,此時時有極小值.(2)可知,進而得到,令,通過導數(shù)可知在上為單調減函數(shù),由可得,從而可求實數(shù)的取值范圍.【詳解】(1)由函數(shù)為奇函數(shù),得在定義域上恒成立,所以,化簡可得,所以.則,令,則.故當時,;當時,,故在上遞減,在上遞增,若,則恒成立,單調遞增,無極值點;所以,解得,取,則又函數(shù)的圖象在區(qū)間上連續(xù)不間斷,故由函數(shù)零點存在性定理知在區(qū)間上,存在為函數(shù)的零點,為極小值,所以,的取值范圍是.(2)由滿足,代入,消去可得.構造函數(shù),所以,當時,,即恒成立,故在上為單調減函數(shù),其中.則可轉化為,故,由,設,可得當時,則在上遞增,故.綜上,的取值范圍是.【點睛】本題考查了利用導數(shù)研究函數(shù)的單調性,考查了利用導數(shù)求函數(shù)的最值,考查了奇函數(shù)的定義,考查了轉化的思想.對于恒成立的問題,常轉化為求的最小值,使;對于恒成立的問題,常轉化為求的最大值,使.19.(1)線的普通方程為,曲線的直角坐標方程為;(2).【解析】試題分析:(1)(1)利用cos2θ+sin2θ=1,即可曲線C1的參數(shù)方程化為普通方程,進而利用即可化為極坐標方程,同理可得曲線C2的直角坐標方程;
(2)由過的圓心,得得,設,,代入中即可得解.試題解析:(1)曲線的普通方程為,化成極坐標方程為曲線的直角坐標方程為(2)在直角坐標系下,,,恰好過的圓心,
∴由得,是橢圓上的兩點,在極坐標下,設,分別代入中,有和∴,則,即20.(1)(2)【解析】
(1)根據橢圓的離心率、橢圓上點的坐標以及列方程,由此求得,進而求得橢圓的方程.(2)設出直線的方程,聯(lián)立直線的方程和橢圓的方程,寫出韋達定理.根據平行四邊形的性質以及向量加法的幾何意義得到,由此求得點的坐標,將的坐標代入橢圓方程,化簡后可求得直線的斜率,由此求得直線的方程.【詳解】(1)由橢圓的離心率為,點在橢圓上,所以,且解得,所以橢圓的方程為.(2)顯然直線的斜率存在,設直線的斜率為,則
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 單位管理制度范例大合集【職工管理】
- 第8課 世界市場與商業(yè)貿易 說課稿-2024-2025學年高二歷史統(tǒng)編版(2019)選擇性必修2 經濟與社會生活
- 2024年航空貨物運送協(xié)議細則版B版
- 2024年軟件開發(fā)外協(xié)合同3篇
- 2024民主黨派多媒體系統(tǒng)設備定期檢修與保養(yǎng)合同6篇
- 2024年設計院股權轉讓與市場拓展合作協(xié)議3篇
- 2024年食品零售商零食采購協(xié)議示例版
- 2024年鋼材訂購協(xié)議(鋼板)
- 2024版信息化工程服務協(xié)議樣本一
- 2022年中考化學考前回歸教材知識-鹽化肥
- DL∕T 516-2017 電力調度自動化運行管理規(guī)程
- 2024-2025學年廣西南寧市小學五年級數(shù)學上冊期末檢查試題及答案
- 語文版六年級語文上冊期中考試卷(可打印)
- 湖南省長沙市中學雅培粹學校2025屆七年級數(shù)學第一學期期末調研模擬試題含解析
- 江蘇省淮安市2023-2024學年七年級上學期期末生物試題【含答案解析】
- 股權質押登記授權委托書
- 混凝土采購運輸組織供應、運輸、售后服務方案
- DZ∕T 0399-2022 礦山資源儲量管理規(guī)范(正式版)
- 光刻技術員工作總結
- MOOC 組織學與胚胎學-華中科技大學 中國大學慕課答案
評論
0/150
提交評論