下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
云南省曲靖市沾益縣大坡鄉(xiāng)第二中學(xué)2023年高一數(shù)學(xué)文月考試卷含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.下列各組函數(shù)中表示同一函數(shù)的是:A、f(x)=x與g(x)=()2
B、f(x)=lnex與g(x)=elnxC、f(x)=,與g(x)=
D、f(x)=與g(t)=t+1(t≠1)參考答案:D2.集合,則陰影部分表示的集合為(
)
A.
B.
C.
D.參考答案:C3.設(shè),用二分法求方程內(nèi)近似解的過程中,計算得到則方程的根落在區(qū)間 A.(1,1.25)
B.(1.25,1.5) C.(1.5,2)
D.不能確定參考答案:B4.在等差數(shù)列中,,,則的前5項和=
A.7
B.15
C.20
D.25參考答案:B5.下列說法正確的是
(
)A.
數(shù)列1,3,5,7可表示為
B.
數(shù)列1,0,與數(shù)列是相同的數(shù)列
C.
數(shù)列的第項是
D.
數(shù)列可以看做是一個定義域為正整數(shù)集的函數(shù)參考答案:C6.已知,則的值是(
)A.
B.3
C.
D.參考答案:C7.設(shè)G是△ABC的重心,a,b,c分別是角A,B,C的對邊,若,則角A=(
)A.90° B.60° C.45° D.30°參考答案:D是的重心,,由余弦定理可得故選8.已知函數(shù)且在區(qū)間上的最大值和最小值之和為,則的值為(A) (B) (C)
(D)參考答案:B略9.△ABC的三個內(nèi)角A,B,C所對的邊分別為a,b,c,asinAsinB+bcos2A=a,則=
(
)A.2
B.2
C.
D.參考答案:D10.二進(jìn)制是計算機(jī)技術(shù)中廣泛采用的一種數(shù)制。二進(jìn)制數(shù)據(jù)是用0和1兩個數(shù)碼來表示的數(shù)。它的基數(shù)為2,進(jìn)位規(guī)則是“逢二進(jìn)一”,借位規(guī)則“借一當(dāng)二”。當(dāng)前的計算機(jī)系統(tǒng)使用的基本上是二進(jìn)制系統(tǒng),計算機(jī)中的二進(jìn)制則是一個非常微小的開關(guān),用1來表示“開”,用0來表示“關(guān)”。如圖所示,把十進(jìn)制數(shù)化為二進(jìn)制數(shù),十進(jìn)制數(shù)化為二進(jìn)制數(shù),把二進(jìn)制數(shù)化為十進(jìn)制數(shù)為,隨機(jī)取出1個不小于,且不超過的二進(jìn)制數(shù),其數(shù)碼中恰有4個1的概率是A. B. C. D.參考答案:D【分析】利用古典概型的概率公式求解.【詳解】二進(jìn)制的后五位的排列總數(shù)為,二進(jìn)制的后五位恰好有三個“1”的個數(shù)為,由古典概型的概率公式得.故選:D【點睛】本題主要考查排列組合的應(yīng)用,考查古典概型的概率的計算,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.二、填空題:本大題共7小題,每小題4分,共28分11.不等式的解集是
.參考答案:略12.如圖所示,為中邊的中點,設(shè),,則_____.(用,表示)參考答案:【知識點】平面向量基本定理【試題解析】因為
故答案為:13.與向量垂直的單位向量為
參考答案:或;14.從盛滿a升酒精的容器里倒出b升,然后再用水加滿,再倒出b升,再用水加滿;這樣倒了n次,則容器中有純酒精_________升.參考答案:略15.函數(shù)的單調(diào)遞增區(qū)間為.參考答案:(﹣∞,2)【考點】復(fù)合函數(shù)的單調(diào)性.【分析】令t=2﹣x>0,求得函數(shù)的定義域為(﹣∞,2),則f(x)=g(t)=,本題即求函數(shù)t的減區(qū)間,利用一次函數(shù)的性質(zhì)得出結(jié)論.【解答】解:令t=2﹣x>0,求得x<2,故函數(shù)的定義域為(﹣∞,2),則f(x)=g(t)=,故本題即求函數(shù)t的減區(qū)間,而一次函數(shù)t在其定義域(﹣∞,2)內(nèi)單調(diào)遞減,故答案為:(﹣∞,2).16.已知集合,若,則的值為______________參考答案:17.已知函數(shù)的定義域是,值域是,則的最大值是_____參考答案:令,可得或者,的值為……兩個相鄰的值相差,因為函數(shù)的值域是,所以的最大值是,故答案為.三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18.若A={x2,2x﹣1,﹣4},B={x﹣5,1﹣x,9},B∩A={9},求A∪B.參考答案:考點: 交集及其運算;并集及其運算.專題: 計算題.分析: 根據(jù)A與B的交集中的元素為9,得到9屬于A又屬于B,求出x的值,確定出A與B,求出并集即可.解答: ∵B∩A={9},∴9∈A,即x2=9或2x﹣1=9,解得:x=3或x=﹣3或x=5,經(jīng)檢驗x=3或x=5不合題意,舍去,∴x=﹣3,即A={1,﹣7,﹣4},B={﹣8,4,9},則A∪B={﹣4,﹣8,﹣7,4,9}.點評: 考查了交集及其運算,以及并集及其運算,熟練掌握各自的定義是解本題的關(guān)鍵.19.設(shè)與是兩個單位向量,其夾角為60°,且=2+,=﹣3+2.(1)求?;(2)求||和||;(3)求與的夾角.參考答案:考點:平面向量數(shù)量積的運算.專題:計算題;平面向量及應(yīng)用.分析:(1)運用向量的數(shù)量積的定義和向量的平方即為模的平方,計算即可得到;(2)運用向量的平方即為模的平方,計算即可得到;(3)運用向量的夾角公式和夾角的范圍,計算即可得到所求值.解答:解:(1)由與是兩個單位向量,其夾角為60°,則=1×=,=(2+)?(﹣3+2)=﹣6+2+?=﹣6+2+=﹣;(2)||====,||====;(3)cos<,>===﹣,由于0≤<,>≤π,則有與的夾角.點評:本題考查平面向量的數(shù)量積的定義和性質(zhì),考查向量的平方即為模的平方,考查向量的夾角公式的運用,考查運算能力,屬于基礎(chǔ)題.20.已知函數(shù)g(x)=ax2﹣2ax+1+b(a>0)在區(qū)間[2,3]上有最大值4和最小值1.設(shè)f(x)=.(1)求a、b的值;(2)若不等式f(2x)﹣k?2x≥0在x∈[﹣1,1]上恒成立,求實數(shù)k的取值范圍;(3)若f(|2x﹣1|)+k?﹣3k=0有三個不同的實數(shù)解,求實數(shù)k的取值范圍.參考答案:【考點】函數(shù)恒成立問題;函數(shù)的零點與方程根的關(guān)系.【分析】(1)由函數(shù)g(x)=a(x﹣1)2+1+b﹣a,a>0,所以g(x)在區(qū)間[2,3]上是增函數(shù),故,由此解得a、b的值.(2)不等式可化為2x+﹣2≥k?2x,故有k≤t2﹣2t+1,t∈[,2],求出h(t)=t2﹣2t+1的最小值,從而求得k的取值范圍.(3)方程f(|2x﹣1|)+k?﹣3k=0?|2x﹣1|2﹣(2+3k)|2x﹣1|+(1+2k)=0,(|2x﹣1|≠0),令|2x﹣1|=t,則t2﹣(2+3k)t+(1+2k)=0(t≠0),構(gòu)造函數(shù)h(t)=t2﹣(2+3k)t+(1+2k),通過數(shù)形結(jié)合與等價轉(zhuǎn)化的思想即可求得k的范圍.【解答】解:(1)函數(shù)g(x)=ax2﹣2ax+b+1=a(x﹣1)2+1+b﹣a,因為a>0,所以g(x)在區(qū)間[2,3]上是增函數(shù),故,即,解得.(2)由已知可得f(x)=x+﹣2,所以,不等式f(2x)﹣k?2x≥0可化為2x+﹣2≥k?2x,可化為1+()2﹣2?≥k,令t=,則k≤t2﹣2t+1.因x∈[﹣1,1],故t∈[,2].故k≤t2﹣2t+1在t∈[,2]上恒成立.記h(t)=t2﹣2t+1,因為t∈[,2],故h(t)min=h(1)=0,所以k的取值范圍是(﹣∞,0].(3)方程f(|2x﹣1|)+k?﹣3k=0可化為:|2x﹣1|2﹣(2+3k)|2x﹣1|+(1+2k)=0,|2x﹣1|≠0,令|2x﹣1|=t,則方程化為t2﹣(2+3k)t+(1+2k)=0(t≠0),∵方程f(|2k﹣1|)+k?﹣3k=0有三個不同的實數(shù)解,∴由t=|2x﹣1|的圖象知,t2﹣(2+
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年特色小鎮(zhèn)開發(fā)建設(shè)合作合同
- 職業(yè)衛(wèi)生課程設(shè)計崔曉紅
- 統(tǒng)計學(xué)課程設(shè)計作業(yè)
- 化工安全生產(chǎn)管理制度
- 自動循環(huán)配料課程設(shè)計
- 照明課程設(shè)計日志模板
- 中國石化集團(tuán)公司安全生產(chǎn)監(jiān)督管理制度
- 電骰子 課程設(shè)計
- 碩士課程設(shè)計論文格式
- 自動大門plc組態(tài)課程設(shè)計
- 2023-2024學(xué)年內(nèi)蒙古名校聯(lián)盟高二下學(xué)期教學(xué)質(zhì)量檢測語文試題(解析版)
- 水利水電工程單元工程施工質(zhì)量驗收評定表及填表說明
- 2023年二輪復(fù)習(xí)解答題專題十七:二次函數(shù)的應(yīng)用(銷售利潤問題)(原卷版+解析)
- 《ISO56001-2024創(chuàng)新管理體系 - 要求》之26:“9績效評價-9.3管理評審”解讀和應(yīng)用指導(dǎo)材料(雷澤佳編制-2024)
- 2024至2030年中國除草劑行業(yè)市場前景預(yù)測及未來發(fā)展趨勢研究報告
- 三年級上冊乘法豎式計算練習(xí)200道及答案
- 2024-2030年中國泥炭市場深度調(diào)查研究報告
- 組建學(xué)?;@球隊方案
- 政務(wù)服務(wù)中心物業(yè)服務(wù)投標(biāo)方案【新版】(技術(shù)方案)
- (正式版)YS∕T 5040-2024 有色金屬礦山工程項目可行性研究報告編制標(biāo)準(zhǔn)
- HJ 179-2018 石灰石石灰-石膏濕法煙氣脫硫工程技術(shù)規(guī)范
評論
0/150
提交評論