版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年河南省許昌市成考專升本高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(50題)1.
2.下列反常積分收斂的是()。
A.
B.
C.
D.
3.當(dāng)x→0時(shí),與x等價(jià)的無(wú)窮小量是
A.A.
B.ln(1+x)
C.C.
D.x2(x+1)
4.
5.
6.以下結(jié)論正確的是().
A.
B.
C.
D.
7.方程x2+y2-z=0表示的二次曲面是()。A.橢球面B.圓錐面C.旋轉(zhuǎn)拋物面D.柱面
8.
9.
10.設(shè)f(x)在點(diǎn)x0處取得極值,則()
A.f"(x0)不存在或f"(x0)=0
B.f"(x0)必定不存在
C.f"(x0)必定存在且f"(x0)=0
D.f"(x0)必定存在,不一定為零
11.
12.微分方程y'=x的通解為A.A.2x2+C
B.x2+C
C.(1/2)x2+C
D.2x+C
13.A.A.e2/3
B.e
C.e3/2
D.e6
14.
15.
16.設(shè)y=2-x,則y'等于()。A.2-xx
B.-2-x
C.2-xln2
D.-2-xln2
17.設(shè)y=sinx,則y'|x=0等于().A.1B.0C.-1D.-2
18.f(x)在[a,b]上可導(dǎo)是f(x)在[a,b]上可積的()。
A.充要條件B.充分條件C.必要條件D.無(wú)關(guān)條件
19.A.x2+C
B.x2-x+C
C.2x2+x+C
D.2x2+C
20.收入預(yù)算的主要內(nèi)容是()
A.銷售預(yù)算B.成本預(yù)算C.生產(chǎn)預(yù)算D.現(xiàn)金預(yù)算
21.
22.設(shè)y=5x,則y'等于().
A.A.
B.
C.
D.
23.剛體上A、B、C、D四點(diǎn)組成一個(gè)平行四邊形,如在其四個(gè)頂點(diǎn)作用四個(gè)力,此四個(gè)邊恰好組成封閉的力多邊形。則()
A.力系平衡
B.力系有合力
C.力系的合力偶矩等于平行四邊形ABCD的面積
D.力系的合力偶矩等于負(fù)的平行四邊形ABCD的面積的2倍
24.
25.
26.
27.
28.A.
B.
C.-cotx+C
D.cotx+C
29.過(guò)點(diǎn)(1,0,0),(0,1,0),(0,0,1)的平面方程為().
A.x+y+z=1
B.2x+y+z=1
C.x+2y+z=1
D.x+y+2z=1
30.平衡物體發(fā)生自鎖現(xiàn)象的條件為()。
A.0≤α≤φ
B.0≤φ≤α
C.0<α<90。
D.0<φ<90。
31.A.-cosxB.-ycosxC.cosxD.ycosx
32.下列關(guān)于動(dòng)載荷的敘述不正確的一項(xiàng)是()。
A.動(dòng)載荷和靜載荷的本質(zhì)區(qū)別是前者構(gòu)件內(nèi)各點(diǎn)的加速度必須考慮,而后者可忽略不計(jì)
B.勻速直線運(yùn)動(dòng)時(shí)的動(dòng)荷因數(shù)為
C.自由落體沖擊時(shí)的動(dòng)荷因數(shù)為
D.增大靜變形是減小沖擊載荷的主要途徑
33.設(shè)y=sin2x,則y'等于().A.A.-cos2xB.cos2xC.-2cos2xD.2cos2x
34.
35.微分方程y''-7y'+12y=0的通解為()A.y=C1e3x+C2e-4x
B.y=C1e-3x+C2e4x
C.y=C1e3x+C2e4x
D.y=C1e-3x+C2e-4x
36.
37.點(diǎn)(-1,-2,-5)關(guān)于yOz平面的對(duì)稱點(diǎn)是()
A.(-1,2,-5)B.(-1,2,5)C.(1,2,5)D.(1,-2,-5)
38.
39.微分方程y’-4y=0的特征根為()A.0,4B.-2,2C.-2,4D.2,440.A.A.充分非必要條件B.必要非充分條件C.充分必要條件D.無(wú)關(guān)條件
41.1954年,()提出了一個(gè)具有劃時(shí)代意義的概念——目標(biāo)管理。
A.西蒙B.德魯克C.梅奧D.亨利.甘特
42.
43.
44.微分方程y'+y=0的通解為()。A.y=ex
B.y=e-x
C.y=Cex
D.y=Ce-x
45.過(guò)點(diǎn)(0,2,4)且平行于平面x+2x=1,y-3x=2的直線方程為
A.x/1=(y-2)/0=(z-4)/-3.
B.x/0=(y-2)/1=(z-4)/-3
C.x/-2=(y-2)/3=(z-4)/1
D.-2x+3(y-2)+z-4=0
46.A.A.
B.
C.
D.
47.滑輪半徑,一0.2m,可繞水平軸0轉(zhuǎn)動(dòng),輪緣上纏有不可伸長(zhǎng)的細(xì)繩,繩的一端掛有物體A,如圖所示。已知滑輪繞軸0的轉(zhuǎn)動(dòng)規(guī)律為φ=0.15t3rad,其中t單位為s。當(dāng)t-2s時(shí),輪緣上M點(diǎn)速度、加速度和物體A的速度、加速度計(jì)算不正確的是()。
A.M點(diǎn)的速度為VM=0.36m/s
B.M點(diǎn)的加速度為aM=0.648m/s2
C.物體A的速度為VA=0.36m/s
D.物體A點(diǎn)的加速度為aA=0.36m/s2
48.設(shè)在點(diǎn)x=1處連續(xù),則a等于()。A.-1B.0C.1D.249.下列反常積分收斂的是()。A.∫1+∞xdx
B.∫1+∞x2dx
C.
D.
50.
二、填空題(20題)51.∫(x2-1)dx=________。52.
53.設(shè)y=f(x)在點(diǎn)x=0處可導(dǎo),且x=0為f(x)的極值點(diǎn),則f(0)=__________
54.
55.
56.設(shè)z=sin(y+x2),則.
57.
58.
59.
60.
61.過(guò)點(diǎn)(1,-1,0)且與直線平行的直線方程為______。
62.
63.
64.通解為C1e-x+C2e-2x的二階常系數(shù)線性齊次微分方程是____.
65.
66.
67.68.
69.
70.設(shè)y=y(x)由方程x2+xy2+2y=1確定,則dy=______.三、計(jì)算題(20題)71.72.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
73.
74.求曲線在點(diǎn)(1,3)處的切線方程.75.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.76.77.
78.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.79.證明:
80.
81.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).82.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則83.
84.求微分方程y"-4y'+4y=e-2x的通解.
85.將f(x)=e-2X展開為x的冪級(jí)數(shù).86.
87.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.88.求微分方程的通解.89.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
90.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
四、解答題(10題)91.92.93.
94.求由曲線y=1眥過(guò)點(diǎn)(e,1)的切線、x軸及該曲線所圍成平面圖形D的面積A及該圖形繞y軸旋轉(zhuǎn)一周所生成的旋轉(zhuǎn)體的體積Vy。
95.設(shè)函數(shù)y=xsinx,求y'.
96.設(shè)D是由曲線x=1-y2與x軸、y軸,在第一象限圍成的有界區(qū)域.求:(1)D的面積S;(2)D繞x軸旋轉(zhuǎn)所得旋轉(zhuǎn)體的體積V.
97.
98.計(jì)算∫xsinxdx。
99.
100.
五、高等數(shù)學(xué)(0題)101.判定
的斂散性。
六、解答題(0題)102.
參考答案
1.B
2.D
3.B本題考查了等價(jià)無(wú)窮小量的知識(shí)點(diǎn)
4.A
5.B
6.C
7.C本題考查的知識(shí)點(diǎn)為二次曲面的方程。
將x2+y2-z=0與二次曲面標(biāo)準(zhǔn)方程對(duì)照,可知其為旋轉(zhuǎn)拋面,故應(yīng)選C。
8.D
9.A
10.A若點(diǎn)x0為f(x)的極值點(diǎn),可能為兩種情形之一:(1)若f(x)在點(diǎn)x0處可導(dǎo),由極值的必要條件可知f"(x0)=0;(2)如f(x)=|x|在點(diǎn)x=0處取得極小值,但f(x)=|x|在點(diǎn)x=0處不可導(dǎo),這表明在極值點(diǎn)處,函數(shù)可能不可導(dǎo)。故選A。
11.B
12.C
13.D
14.D
15.B
16.D本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)求導(dǎo)數(shù)的鏈?zhǔn)椒▌t。由于y=2-xY'=2-x·ln2·(-x)'=-2-xln2.考生易錯(cuò)誤選C,這是求復(fù)合函數(shù)的導(dǎo)數(shù)時(shí)丟掉項(xiàng)而造成的!因此考生應(yīng)熟記:若y=f(u),u=u(x),則
不要丟項(xiàng)。
17.A由于
可知應(yīng)選A.
18.B∵可導(dǎo)一定連續(xù),連續(xù)一定可積;反之不一定。∴可導(dǎo)是可積的充分條件
19.B本題考查的知識(shí)點(diǎn)為不定積分運(yùn)算.
因此選B.
20.A解析:收入預(yù)算的主要內(nèi)容是銷售預(yù)算。
21.A解析:
22.C本題考查的知識(shí)點(diǎn)為基本初等函數(shù)的求導(dǎo).
y=5x,y'=5xln5,因此應(yīng)選C.
23.D
24.D
25.B解析:
26.B解析:
27.A解析:
28.C本題考查的知識(shí)點(diǎn)為不定積分基本公式.
29.A設(shè)所求平面方程為.由于點(diǎn)(1,0,0),(0,1,0),(0,0,1)都在平面上,將它們的坐標(biāo)分別代入所設(shè)平面方程,可得方程組
故選A.
30.A
31.C本題考查的知識(shí)點(diǎn)為二階偏導(dǎo)數(shù)。由于z=y(tǒng)sinx,因此可知應(yīng)選C。
32.C
33.D本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)求導(dǎo)數(shù)的鏈?zhǔn)椒▌t.
Y=sin2x,
則y'=cos(2x)·(2x)'=2cos2x.
可知應(yīng)選D.
34.B
35.C因方程:y''-7y'+12y=0的特征方程為r2-7r+12=0,于是有特征根r1=3,r2=4,故微分方程的通解為:y=C1e3x+C2e4x
36.B
37.D關(guān)于yOz平面對(duì)稱的兩點(diǎn)的橫坐標(biāo)互為相反數(shù),故選D。
38.B
39.B由r2-4=0,r1=2,r2=-2,知y"-4y=0的特征根為2,-2,故選B.
40.D
41.B解析:彼得德魯克最早提出了目標(biāo)管理的思想。
42.C解析:
43.B解析:
44.D可以將方程認(rèn)作可分離變量方程;也可以將方程認(rèn)作一階線性微分方程;還可以仿二階線性常系數(shù)齊次微分方程,并作為特例求解。解法1將方程認(rèn)作可分離變量方程。分離變量
兩端分別積分
或y=Ce-x解法2將方程認(rèn)作一階線性微分方程.由通解公式可得解法3認(rèn)作二階常系數(shù)線性齊次微分方程特例求解:特征方程為r+1=0,特征根為r=-1,方程通解為y=Ce-x。
45.C本題考查了直線方程的知識(shí)點(diǎn).
46.D本題考查的知識(shí)點(diǎn)為二階常系數(shù)線性非齊次微分方程特解y*的取法:
47.B
48.C本題考查的知識(shí)點(diǎn)為函數(shù)連續(xù)性的概念。
由于y為分段函數(shù),x=1為其分段點(diǎn)。在x=1的兩側(cè)f(x)的表達(dá)式不同。因此討論y=f(x)在x=1處的連續(xù)性應(yīng)該利用左連續(xù)與右連續(xù)的概念。由于
當(dāng)x=1為y=f(x)的連續(xù)點(diǎn)時(shí),應(yīng)有存在,從而有,即
a+1=2。
可得:a=1,因此選C。
49.DA,∫1+∞xdx==∞發(fā)散;
50.B
51.
52.
53.
54.
本題考查的知識(shí)點(diǎn)為定積分的基本公式.
55.
解析:56.2xcos(y+x2)本題考查的知識(shí)點(diǎn)為二元函數(shù)的偏導(dǎo)數(shù)計(jì)算.
可以令u=y+x2,得z=sinu,由復(fù)合函數(shù)偏導(dǎo)數(shù)的鏈?zhǔn)椒▌t得
57.11解析:
58.
59.1/61/6解析:
60.261.本題考查的知識(shí)點(diǎn)為直線的方程和直線與直線的關(guān)系。由于兩條直線平行的充分必要條件為它們的方向向量平行,因此可取所求直線的方向向量為(2,1,-1).由直線的點(diǎn)向式方程可知所求直線方程為
62.
63.
64.65.本題考查的知識(shí)點(diǎn)為重要極限公式。
66.
解析:
67.x=-168.2xsinx2;本題考查的知識(shí)點(diǎn)為可變上限積分的求導(dǎo).
69.f(x)+Cf(x)+C解析:
70.
;
71.
72.由二重積分物理意義知
73.
74.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
75.
76.77.由一階線性微分方程通解公式有
78.函數(shù)的定義域?yàn)?/p>
注意
79.
80.
81.
列表:
說(shuō)明
82.由等價(jià)無(wú)窮小量的定義可知
83.
84.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
85.
86.
則
87.
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 課題申報(bào)參考:教育元宇宙的應(yīng)用倫理研究
- 2025年嚴(yán)于修身學(xué)習(xí)心得體會(huì)(5篇)
- 疫情防護(hù)2025年度企業(yè)員工培訓(xùn)與心理咨詢合同3篇
- 二零二五年度城市綠化養(yǎng)護(hù)勞務(wù)分包合同書4篇
- 二零二五年度城市住宅出售協(xié)議書(含裝修及家具配置)4篇
- 二零二五年鍋爐維修工程承包與環(huán)保驗(yàn)收協(xié)議3篇
- 2024手繪藝術(shù)作品拍賣合同協(xié)議3篇
- 安徽省二零二五年度住房租賃市場(chǎng)租賃糾紛處理合同
- 2025年護(hù)林員勞動(dòng)合同書(含森林資源保護(hù)培訓(xùn))3篇
- 2025版土地經(jīng)營(yíng)權(quán)租賃與農(nóng)業(yè)產(chǎn)業(yè)扶貧合同3篇
- 消防產(chǎn)品目錄(2025年修訂本)
- 地方性分異規(guī)律下的植被演替課件高三地理二輪專題復(fù)習(xí)
- 光伏項(xiàng)目風(fēng)險(xiǎn)控制與安全方案
- 9.2提高防護(hù)能力教學(xué)設(shè)計(jì) 2024-2025學(xué)年統(tǒng)編版道德與法治七年級(jí)上冊(cè)
- 催收培訓(xùn)制度
- ISO 22003-1:2022《食品安全-第 1 部分:食品安全管理體系 審核與認(rèn)證機(jī)構(gòu)要求》中文版(機(jī)翻)
- 2024年廣東省高考地理真題(解析版)
- 2024高考物理廣東卷押題模擬含解析
- 人教版五年級(jí)上冊(cè)數(shù)學(xué)簡(jiǎn)便計(jì)算大全600題及答案
- GB/T 15945-1995電能質(zhì)量電力系統(tǒng)頻率允許偏差
- GB 32311-2015水電解制氫系統(tǒng)能效限定值及能效等級(jí)
評(píng)論
0/150
提交評(píng)論