




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年黑龍江省哈爾濱市成考專升本高等數(shù)學(xué)二自考真題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(30題)1.設(shè)z=xy,則dz=【】
A.yxy-1dx+xylnxdy
B.xy-1dx+ydy
C.xy(dx+dy)
D.xy(xdx+ydy)
2.設(shè)?(x)在x0及其鄰域內(nèi)可導(dǎo),且當(dāng)x<x0時(shí)?ˊ(x)>0,當(dāng)x>x0時(shí)?ˊ(x)<0,則必?ˊ(x0)().
A.小于0B.等于0C.大于0D.不確定
3.A.A.
B.
C.
D.
4.設(shè)事件A,B的P(B)=0.5,P(AB)=0.4,則在事件B發(fā)生的條件下,事件A發(fā)生的條件概率P(A|B)=().A.A.0.1B.0.2C.0.8D.0.9
5.函數(shù)f(x)在[a,b]上連續(xù)是f(x)在該區(qū)間上可積的()A.必要條件,但非充分條件
B.充分條件,但非必要條件
C.充分必要條件
D.非充分條件,亦非必要條件
6.
7.()。A.
B.
C.
D.
8.
9.
10.函數(shù)f(x)在點(diǎn)x0處有定義,是f(x)在點(diǎn)x0處連續(xù)的()。A.必要條件,但非充分條件B.充分條件,但非必要條件C.充分必要條件D.非充分條件,亦非必要條件
11.設(shè)函數(shù)f(x)在x=1處可導(dǎo),且f(1)=0,若f"(1)>0,則f(1)是()。A.極大值B.極小值C.不是極值D.是拐點(diǎn)
12.
A.xlnx+C
B.-xlnx+C
C.
D.
13.
14.A.-2B.-1C.0D.2
15.
16.已知f(x)=aretanx2,則fˊ(1)等于().A.A.-1B.0C.1D.2
17.曲線:y=ex和直線y=1,x=1圍成的圖形面積等于【】A.2-eB.e-2C.e-1D.e+1
18.
19.A.A.
B.
C.
D.
20.
21.
22.f(x)=|x-2|在點(diǎn)x=2的導(dǎo)數(shù)為A.A.1B.0C.-1D.不存在
23.
24.
25.
26.設(shè)fn-2(x)=e2x+1,則fn(x)|x=0=0A.A.4eB.2eC.eD.1
27.
28.
29.()。A.
B.
C.
D.
30.
二、填空題(30題)31.
32.
33.
34.
35.
36.37.38.
39.
40.
41.
42.
43.z=ln(x+ey),則
44.
45.
46.47.
48.
49.
50.
51.
52.設(shè)事件A與B相互獨(dú)立,且P(A)=0.4,P(A+B)=0.7,則P(B)=
53.已知y=x3-αx的切線平行于直線5x-y+1=0,則α=_________。
54.
55.
56.
57.
58.
59.
60.
三、計(jì)算題(30題)61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.77.已知x=-1是函數(shù)f(x)=ax3+bx2的駐點(diǎn),且曲線y=f(x)過點(diǎn)(1,5),求a,b的值.
78.
79.設(shè)曲線y=4-x2(x≥0)與x軸,y軸及直線x=4所圍成的平面圖形為D(如
圖中陰影部分所示).
圖1—3—1
①求D的面積S;
②求圖中x軸上方的陰影部分繞y軸旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積Vy.
80.
81.
82.
83.
84.已知函數(shù)f(x)=-x2+2x.
①求曲線y=f(x)與x軸所圍成的平面圖形面積S;
②求①的平面圖形繞x軸旋轉(zhuǎn)一周所得旋轉(zhuǎn)體體積Vx.85.設(shè)函數(shù)y=x4sinx,求dy.
86.
87.
88.
89.
90.
四、解答題(30題)91.
92.93.求由曲線y=2-x2,),=2x-1及x≥0圍成的平面圖形的面積S以及此平面圖形繞X軸旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積Vx.
94.
95.
96.求由曲線y=x,y=lnx及y=0,y=1圍成的平面圖形的面積S,并求
此平面圖形繞y軸旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積Vy.97.
98.設(shè)平面圖形是由曲線y=3/x和x+y=4圍成的。
(1)求此平面圖形的面積A。
(2)求此平面圖形繞x軸旋轉(zhuǎn)而成的旋轉(zhuǎn)體的體積Vx。
99.100.
101.
102.
103.已知袋中裝有8個(gè)球,其中5個(gè)白球,3個(gè)黃球.一次取3個(gè)球,以X表示所取的3個(gè)球中黃球的個(gè)數(shù).
(1)求隨機(jī)變量X的分布列;
(2)求數(shù)學(xué)期望E(X).104.105.計(jì)算106.求二元函數(shù)f(x,y)=e2x(x+y2+2y)的極值。107.108.109.
110.
111.
112.
113.
114.
115.
116.117.
118.
119.
120.
五、綜合題(10題)121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
六、單選題(0題)131.A.A.
B.
C.
D.
參考答案
1.A
2.B本題主要考查函數(shù)在點(diǎn)x0處取到極值的必要條件:若函數(shù)y=?(x)在點(diǎn)x0處可導(dǎo),且x0為?(x)的極值點(diǎn),則必有?ˊ(x0)=0.
本題雖未直接給出x0是極值點(diǎn),但是根據(jù)已知條件及極值的第一充分條件可知f(x0)為極大值,故選B.
3.B
4.C利用條件概率公式計(jì)算即可.
5.B根據(jù)定積分的定義和性質(zhì),函數(shù)f(x)在[a,b]上連續(xù),則f(x)在[a,b]上可積;反之,則不一定成立。
6.4
7.B
8.1/4
9.12
10.A
11.B
12.C本題考查的知識(shí)點(diǎn)是不定積分的概念和換元積分的方法.
等式右邊部分拿出來,這就需要用湊微分法(或換元積分法)將被積表達(dá)式寫成能利用公式的不定積分的結(jié)構(gòu)式,從而得到所需的結(jié)果或答案.考生如能這樣深層次理解基本積分公式,則無論是解題能力還是計(jì)算能力與水平都會(huì)有一個(gè)較大層次的提高.
基于上面對(duì)積分結(jié)構(gòu)式的理解,本題亦為:
13.B
14.D根據(jù)函數(shù)在一點(diǎn)導(dǎo)數(shù)定義的結(jié)構(gòu)式可知
15.2
16.C先求出fˊ(x),再將x=1代入.
17.B
18.4
19.B
20.15π/4
21.A解析:
22.D
23.C
24.
25.D
26.A
27.A
28.6
29.B
30.C31.0.35
32.1
33.
34.C
35.D36.0
37.π2π2
38.
39.
40.1641.應(yīng)填π/4.
用不定積分的性質(zhì)求解.
42.
43.-ey/(x+ey)2
44.3-e-1
45.
解析:
46.
所以k=2.47.
48.2arctan2-(π/2)
49.B
50.1/2
51.
52.0.5
53.-2
54.(-∞0)(-∞,0)解析:
55.1/4
56.D
57.-sin2-sin2解析:
58.
59.A
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.76.解法l等式兩邊對(duì)x求導(dǎo),得
ey·y’=y+xy’.
解得
77.f’(x)=3ax2+2bx,f’(-1)=3a-2b=0,再由f(l)=5得a+b=5,聯(lián)立解得a=2,b=3.
78.
79.
80.
81.
82.
=1/cosx-tanx+x+C
=1/cosx-tanx+x+C
83.
84.
85.因?yàn)閥’=4x3sinx+x4cosx,所以dy=(4x3sinx+x4cosx)dx
86.
87.
88.
89.
由表可知單調(diào)遞增區(qū)間是(-∞-2]∪(1+∞]單調(diào)遞減區(qū)間是[-21]。
由表可知,單調(diào)遞增區(qū)間是(-∞,-2]∪(1,+∞],單調(diào)遞減區(qū)間是[-2,1]。
90.
91.
92.93.本題考查的知識(shí)點(diǎn)有平面圖形面積的計(jì)算及旋轉(zhuǎn)體體積的計(jì)算.
本題的難點(diǎn)是根據(jù)所給的已知曲線畫出封閉的平面圖形,然后再求其面積S.求面積的關(guān)鍵是確定對(duì)x積分還是對(duì)Y積分.
確定平面圖形的最簡(jiǎn)單方法是:題中給的曲線是三條,則該平面圖形的邊界也必須是三條,多一條或少一條都不是題中所要求的.
確定對(duì)x積分還是對(duì)y積分的一般原則是:盡可能用一個(gè)定積分而不是幾個(gè)定積分之和來表示.本題如改為對(duì)y積分,則有計(jì)算量顯然比對(duì)x積分的計(jì)算量要大,所以選擇積分變量的次序是能否快而準(zhǔn)地求出積分的關(guān)鍵.
在求旋轉(zhuǎn)體的體積時(shí),一定要注意題目中的旋轉(zhuǎn)軸是戈軸還是y軸.
由于本題在x軸下面的圖形繞x軸旋轉(zhuǎn)成的體積與x軸上面的圖形繞x軸旋轉(zhuǎn)的旋轉(zhuǎn)體的體積重合了,所以只要計(jì)算x軸上面的圖形繞戈軸旋轉(zhuǎn)的旋轉(zhuǎn)體體積即可.如果將旋轉(zhuǎn)體的體積寫成上面的這種錯(cuò)誤是考生比較容易出現(xiàn)的,所以審題時(shí)一定要注意.
由已知曲線畫出平面圖形為如圖2—1—2所示的陰影區(qū)域.
94.
95.96.本題考查的知識(shí)點(diǎn)是曲邊梯形面積的求法及旋轉(zhuǎn)體體積的求法.
首先應(yīng)根據(jù)題目中所給的曲線方程畫出封閉的平面圖形,然后根據(jù)此圖形的特點(diǎn)選擇對(duì)x積分還是對(duì)),積分.選擇的原則是:使得積分計(jì)算盡可能簡(jiǎn)單或容易算出.本題如果選擇對(duì)x積分,則有
這顯然要比對(duì)y積分麻煩.
在求旋轉(zhuǎn)體的體積時(shí)一定要注意是繞x軸還是繞y軸旋轉(zhuǎn).歷年的試題均是繞x軸旋轉(zhuǎn),而本題是求繞y軸旋轉(zhuǎn)的旋轉(zhuǎn)體的體積.
旋轉(zhuǎn)體的體積計(jì)算中最容易出現(xiàn)的錯(cuò)誤(在歷年的試卷均是如此)是:
解畫出平面圖形,如圖2-7-2所示的陰影部分,則有陰影部分的面積
97.
98.
99.
100.
101.
102.103.本題考查的知識(shí)點(diǎn)是隨機(jī)變量X的概率分布的求法.
本題的關(guān)鍵是要分析出隨機(jī)變量X的取值以及算出取這些值時(shí)的概率.
因?yàn)橐淮稳?個(gè)球,3個(gè)球中黃球的個(gè)數(shù)可能是0個(gè),1個(gè),2個(gè),3個(gè),即隨機(jī)變量X的取值為X=0,X=1,X=2,X=3.取這些值的概率用古典概型的概率公式計(jì)算即可.
解(1)
所以隨機(jī)變量X的分布列為
X
01
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 稀土產(chǎn)業(yè)國(guó)際競(jìng)爭(zhēng)力分析:2025年戰(zhàn)略地位與市場(chǎng)格局報(bào)告
- 豪車銷售合同履約金條款
- 針對(duì)2025年燃?xì)夤艿栏脑旃こ痰纳鐣?huì)穩(wěn)定風(fēng)險(xiǎn)評(píng)估與風(fēng)險(xiǎn)評(píng)估體系構(gòu)建與實(shí)踐報(bào)告
- 跨境支付行業(yè)2025年區(qū)塊鏈技術(shù)跨境支付跨境支付清算優(yōu)化研究報(bào)告
- 教育行業(yè)報(bào)告:2025年成人教育終身學(xué)習(xí)體系構(gòu)建與平臺(tái)運(yùn)營(yíng)風(fēng)險(xiǎn)控制
- 高速公路智能交通系統(tǒng)2025年智能應(yīng)急響應(yīng)策略研究報(bào)告
- 九年一貫制學(xué)校2025年秋學(xué)期環(huán)境保護(hù)教育計(jì)劃
- 五年級(jí)數(shù)學(xué)課外活動(dòng)計(jì)劃
- 小學(xué)五年級(jí)職業(yè)體驗(yàn)綜合實(shí)踐活動(dòng)計(jì)劃
- 橋梁建設(shè)施工環(huán)??刂朴?jì)劃
- 2024-2025學(xué)年統(tǒng)編版小學(xué)道德與法治三年級(jí)下冊(cè)期中考試測(cè)試卷附答案
- 智能垃圾桶設(shè)計(jì)方案資料
- 2025陜西漢中漢源電力(集團(tuán))限公司招聘56人易考易錯(cuò)模擬試題(共500題)試卷后附參考答案
- 2025年北京市西城區(qū)中考一模道德與法治試卷(含答案)
- 新聞報(bào)道的寫作及范例課件
- 【9數(shù)一?!?025年安徽省合肥市第四十五中學(xué)九年級(jí)中考數(shù)學(xué)一模試卷
- 年產(chǎn)30萬噸生物航煤項(xiàng)目可行性研究報(bào)告(僅供參考)
- 南京師范大學(xué)自主招生個(gè)人陳述范文與撰寫要點(diǎn)
- 浙江省A9協(xié)作體2024-2025學(xué)年高二下學(xué)期4月期中聯(lián)考語文試卷(含答案 )
- 2025年初中學(xué)業(yè)水平考試地理模擬卷及答案:圖表解讀與地理學(xué)科創(chuàng)新試題
- (四調(diào))武漢市2025屆高中畢業(yè)生四月調(diào)研考試 語文試卷(含答案詳解)
評(píng)論
0/150
提交評(píng)論