《分類加法計(jì)數(shù)原理與分步乘法計(jì)數(shù)原理》設(shè)計(jì)_第1頁(yè)
《分類加法計(jì)數(shù)原理與分步乘法計(jì)數(shù)原理》設(shè)計(jì)_第2頁(yè)
《分類加法計(jì)數(shù)原理與分步乘法計(jì)數(shù)原理》設(shè)計(jì)_第3頁(yè)
《分類加法計(jì)數(shù)原理與分步乘法計(jì)數(shù)原理》設(shè)計(jì)_第4頁(yè)
《分類加法計(jì)數(shù)原理與分步乘法計(jì)數(shù)原理》設(shè)計(jì)_第5頁(yè)
已閱讀5頁(yè),還剩1頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

《分類加法計(jì)數(shù)原理與分步乘法計(jì)數(shù)》教學(xué)設(shè)計(jì)(2)教學(xué)目標(biāo)教學(xué)重難點(diǎn)命題展望排排列組合、合1.理解并運(yùn)用分類加法計(jì)數(shù)原理或分步乘法計(jì)數(shù)原理解決一些簡(jiǎn)單的實(shí)際問題;2.理解排列、組合的概念;能利用計(jì)數(shù)原理推導(dǎo)排列數(shù)公式、組合數(shù)公式,并能解決簡(jiǎn)單的實(shí)際問題;3.能用計(jì)數(shù)原理證明二項(xiàng)式定理;會(huì)用二項(xiàng)式定理解決與二項(xiàng)展開式有關(guān)的簡(jiǎn)單問題.本章重點(diǎn):排列、組合的意義及其計(jì)算方法,二項(xiàng)式定理的應(yīng)用.本章難點(diǎn):用二項(xiàng)式定理解決與二項(xiàng)展開式有關(guān)的問題.課時(shí)安排:1課時(shí)排列組合是學(xué)習(xí)概率的基礎(chǔ),其核心是兩個(gè)基本原理.高考中著重考查兩個(gè)基本原理,排列組合的概念及二項(xiàng)式定理.教學(xué)課時(shí)1個(gè)課時(shí)隨機(jī)事件的概率1.了解隨機(jī)事件發(fā)生的不確定性和頻率的穩(wěn)定性,了解概率的意義以及頻率與概率的區(qū)別;2.了解兩個(gè)互斥事件的概率加法公式和相互獨(dú)立事件同時(shí)發(fā)生的概率乘法公式;3.理解古典概型及其概率計(jì)算公式;會(huì)計(jì)算一些隨機(jī)事件所包含的基本事件的個(gè)數(shù)及事件發(fā)生的概率;4.了解隨機(jī)數(shù)的意義,能運(yùn)用模擬方法估計(jì)概率,了解幾何概型的意義.本章重點(diǎn):1.隨機(jī)事件、互斥事件及概率的意義,并會(huì)計(jì)算互斥事件的概率;2.古典概型、幾何概型的概率計(jì)算.本章難點(diǎn):1.互斥事件的判斷及互斥事件概率加法公式的應(yīng)用;2.可以轉(zhuǎn)化為幾何概型求概率的問題.本部分要求考生能從集合的思想觀點(diǎn)認(rèn)識(shí)事件、互斥事件與對(duì)立事件,進(jìn)而理解概率的性質(zhì)、公式,還要求考生了解幾何概型與隨機(jī)數(shù)的意義.在高考中注重考查基礎(chǔ)知識(shí)和基本方法的同時(shí),還??疾榉诸惻c整合,或然與必然的數(shù)學(xué)思想方法,邏輯思維能力以及運(yùn)用概率知識(shí)解決實(shí)際問題的能力.離散型隨機(jī)變量1.理解取有限值的離散型隨機(jī)變量及其分布列的概念,了解分布列對(duì)于刻畫隨機(jī)現(xiàn)象的重要性;2.理解超幾何分布及其導(dǎo)出過程,并能進(jìn)行簡(jiǎn)單的應(yīng)用;3.了解條件概率和兩個(gè)事件相互獨(dú)立的概念,理解n次獨(dú)立重復(fù)試驗(yàn)的模型及二項(xiàng)分布,并能解決一些簡(jiǎn)單的實(shí)際問題;4.理解取有限值的離散型隨機(jī)變量均值、方差的概念,能計(jì)算簡(jiǎn)單離散型隨機(jī)變量的均值、方差,并能解決一些實(shí)際問題;5.利用實(shí)際問題的直方圖,認(rèn)識(shí)正態(tài)分布曲線的特點(diǎn)及曲線所表示的意義.本章重點(diǎn):1.離散型隨機(jī)變量及其分布列;2.獨(dú)立重復(fù)試驗(yàn)的模型及二項(xiàng)分布.本章難點(diǎn):1.利用離散型隨機(jī)變量的均值、方差解決一些實(shí)際問題;2.正態(tài)分布曲線的特點(diǎn)及曲線所表示的意義.求隨機(jī)變量的分布列與期望,以及在此基礎(chǔ)上進(jìn)行統(tǒng)計(jì)分析是近幾年來較穩(wěn)定的高考命題態(tài)勢(shì).考生應(yīng)注重對(duì)特殊分布(如二項(xiàng)分布、超幾何分布)的理解和對(duì)事件的意義的理解.知識(shí)網(wǎng)絡(luò)分類加法計(jì)數(shù)原理與分步乘法計(jì)數(shù)原理典例精析題型一分類加法計(jì)數(shù)原理的應(yīng)用【例1】在1到20這20個(gè)整數(shù)中,任取兩個(gè)數(shù)相加,使其和大于20,共有種取法.【解析】當(dāng)一個(gè)加數(shù)是1時(shí),另一個(gè)加數(shù)只能是20,有1種取法;當(dāng)一個(gè)加數(shù)是2時(shí),另一個(gè)加數(shù)可以是19,20,有2種取法;當(dāng)一個(gè)加數(shù)是3時(shí),另一個(gè)加數(shù)可以是18,19,20,有3種取法;……當(dāng)一個(gè)加數(shù)是10時(shí),另一個(gè)加數(shù)可以是11,12,…,19,20,有10種取法;當(dāng)一個(gè)加數(shù)是11時(shí),另一個(gè)加數(shù)可以是12,13,…,19,20,有9種取法;……當(dāng)一個(gè)加數(shù)是19時(shí),另一個(gè)加數(shù)只能是20,有1種取法.由分類加法計(jì)數(shù)原理可得共有1+2+3+…+10+9+8+…+1=100種取法.【點(diǎn)撥】采用列舉法分類,先確定一個(gè)加數(shù),再利用“和大于20”確定另一個(gè)加數(shù).【變式訓(xùn)練1】(2013濟(jì)南市模擬)從集合{1,2,3,…,10}中任意選出三個(gè)不同的數(shù),使這三個(gè)數(shù)成等比數(shù)列,這樣的等比數(shù)列的個(gè)數(shù)為() 【解析】當(dāng)公比為2時(shí),等比數(shù)列可為1,2,4或2,4,8;當(dāng)公比為3時(shí),等比數(shù)列可為1,3,9;當(dāng)公比為eq\f(3,2)時(shí),等比數(shù)列可為4,6,9.同理,公比為eq\f(1,2)、eq\f(1,3)、eq\f(2,3)時(shí),也有4個(gè).故選D.題型二分步乘法計(jì)數(shù)原理的應(yīng)用【例2】從6人中選4人分別到張家界、韶山、衡山、桃花源四個(gè)旅游景點(diǎn)游覽,要求每個(gè)旅游景點(diǎn)只有一人游覽,每人只游覽一個(gè)旅游景點(diǎn),且6個(gè)人中甲、乙兩人不去張家界游覽,則不同的選擇方案共有種.【解析】能去張家界的有4人,依此能去韶山、衡山、桃花源的有5人、4人、3人.則由分步乘法計(jì)數(shù)原理得不同的選擇方案有4×5×4×3=240種.【點(diǎn)撥】根據(jù)題意正確分步,要求各步之間必須連續(xù),只有按照這幾步逐步地去做,才能完成這件事,各步之間既不能重復(fù)也不能遺漏.【變式訓(xùn)練2】(2010湘潭市調(diào)研)要安排一份5天的值班表,每天有一人值班,現(xiàn)有5人,每人可以值多天班或不值班,但相鄰兩天不準(zhǔn)由同一人值班,問此值班表共有種不同的排法.【解析】依題意,值班表須一天一天分步完成.第一天有5人可選有5種方法,第二天不能用第一天的人有4種方法,同理第三天、第四天、第五天也都有4種方法,由分步乘法計(jì)數(shù)原理共有5×4×4×4×4=1280種方法.題型三分類和分步計(jì)數(shù)原理綜合應(yīng)用【例3】(2012長(zhǎng)郡中學(xué))如圖,用4種不同的顏色對(duì)圖中5個(gè)區(qū)域涂色(4種顏色全部使用),要求每個(gè)區(qū)域涂一種顏色,相鄰的區(qū)域不能涂相同的顏色,則不同的涂色種數(shù)有.【解析】方法一:由題意知,有且僅有兩個(gè)區(qū)域涂相同的顏色,分為4類:1與5同;2與5同;3與5同;1與3同.對(duì)于每一類有Aeq\o\al(4,4)種涂法,共有4Aeq\o\al(4,4)=96種方法.方法二:第一步:涂區(qū)域1,有4種方法;第二步:涂區(qū)域2,有3種方法;第三步:涂區(qū)域4,有2種方法(此前三步已經(jīng)用去三種顏色);第四步:涂區(qū)域3,分兩類:第一類,3與1同色,則區(qū)域5涂第四種顏色;第二類,區(qū)域3與1不同色,則涂第四種顏色,此時(shí)區(qū)域5就可以涂區(qū)域1或區(qū)域2或區(qū)域3中的任意一種顏色,有3種方法.所以,不同的涂色種數(shù)有4×3×2×(1×1+1×3)=96種.【點(diǎn)撥】染色問題是排列組合中的一類難題.本題能運(yùn)用兩個(gè)基本原理求解,要注意的是分類中有分步,分步后有分類.【變式訓(xùn)練3】(2009深圳市調(diào)研)用紅、黃、藍(lán)三種顏色去涂圖中標(biāo)號(hào)為1,2,…,9的9個(gè)小正方形,使得任意相鄰(有公共邊)小正方形所涂顏色都不相同,且1,5,9號(hào)小正方形涂相同顏色,則符合條件的所有涂法有多少種?【解析】第一步,從三種顏色中選一種顏色涂1,5,9號(hào)有Ceq\o\al(1,3)種涂法;第二步,涂2,3,6號(hào),若2,6同色,有4種涂法,若2,6不同色,有2種涂法,故共有6種涂法;第三步,涂4,7,8號(hào),同第二步,共有6種涂法.由分步乘法原理知共有3×6×6=108種涂法.總結(jié)提高分類加法計(jì)數(shù)原理和分步乘法計(jì)數(shù)原理回答的都是完成一件事有多少種不同方法或種數(shù)的問題,其區(qū)別在于:分類加法計(jì)數(shù)原理是完成一件事要分若干類

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論