哈佛大學(xué)概率與數(shù)理統(tǒng)計(jì)課件_第1頁(yè)
哈佛大學(xué)概率與數(shù)理統(tǒng)計(jì)課件_第2頁(yè)
哈佛大學(xué)概率與數(shù)理統(tǒng)計(jì)課件_第3頁(yè)
哈佛大學(xué)概率與數(shù)理統(tǒng)計(jì)課件_第4頁(yè)
哈佛大學(xué)概率與數(shù)理統(tǒng)計(jì)課件_第5頁(yè)
已閱讀5頁(yè),還剩25頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

-HowtoBeAWinner-TheMathsofRaceFixingandMoneyLaundering

JohnDBarrowWhyisProbabilityTheoryNotAncient?ReligiousbeliefsOrNoconceptofequallylikelyoutcomes???“Andtheysaideveryonetohisfellow,Come,andletuscastlots,thatwemayknowforwhosecausethisevilisuponus.SotheycastlotsandthelotfelluponJonah.”BookofJonah1v7St.Augustine:“Wesaythatthosecausesthataresaidtobebychancearenotnonexistentbutarehidden,andweattributethemtothewillofthetrueGod”Sheep's’anklebones,6-sided,numbered,asymmetricalDivinationwithsetsof5inAsiaMinorfrom3600BCEventuallyreplacedbydiceAstragaliAncientDiceThemostpopulardicegameoftheMiddleAges:wascalled“hazard”Arabic“alzhar”means“adie.”Romanicosahedraldie20facesWesterndiceareright-handed:ifthe1-spotisfaceupandthe2-spotisturnedtofacetheleftthenthe3-spotistotherightofit.Chinesediceareleft-handed:theywillhavethefacestheoppositewayround.RightandLeft-handedDiceTheProblemofthePointsChevalierdeMéréandBlaisePascalandPierredeFermat1654TwopeopleplayafairgameThefirsttowinsixpointstakesallthemoney.Howshouldthestakesbedividedifthegameisinterruptedwhenonehas5pointsandtheother3?HHH,HHT,HTH,TTT,THT,TTH,THH.HTTPlayerwith3pointshastowinallthenext3games.Hehas1/8chanceofdoingthat.Hisopponenthasa7/8chanceofwinning1moregame.Give7/8ofprizemoneytotheonewith5and1/8totheotherMoreChevalierdeMéréHewonlotsofmoneybettingonatleast1sixin4rollsofadiebasedpurelyonexperienceProbabilityofno6is5/6Probabilityofno6infourthrowsis5/65/65/65/6=(5/6)4=625/1296Probabilityofone6is1–625/1296=671/1296=0.5177>1/2Sohethoughtthatheshouldbetononeormoredouble6’soccurringin24rollsof2diceProbabilityofnodoublesixesin24throwsis(35/36)24=0.5086Probabilityofonedoublesixis1-(35/36)24=0.4914<1/2Afterawhilehestoppeddoingthis!WinningTheTossAustralianOpenJanuary2008PlayingFairWithaBiasedCoinUnequalprobabilityofHandT:p?

ProbabilityofHispProbabilityofTis1-pTosstwiceandignorepairsHHandTTProbabilityofHTisp(1-p)ProbabilityofTHis(1-p)pCallcombinationHT‘Newheads’CallcombinationTH‘Newtails’NewheadsandNewtailsareequallylikelyEfficiencyispoor(50%)–discardtheHHandTTsFakingRandomSequencesTHHTHTHTHTHTHTHTHTTTHTHTHTHTHTHHTHHTHTHTHHTHTHHHTTHHTHTTHHHTHTTTHTHHTHTTTHTHTHTHHTHTTTHHTHTHTHTTDotheselooklikerealrandomsequences?4.THHHHTTTTHTTHHHHTTHTHHTTHTTHTHHH5.HTTTTHHHTHTTHHHHTTTHTTTTHHTTTTTH6.TTHTTHHTHTTTTTHTTHHTTHTTTTTTTTHHSomeMoreCandidatesWith32tossesAretheyrandom?4.THHHHTTTTHTTHHHHTTHTHHTTHTTHTHHH5.HTTTTHHHTHTTHHHHTTTHTTTTHHTTTTTH6.TTHTTHHTHTTTTTHTTHHTTHHHHHHTTTTHSomeMoreCandidatesWith32tossesThechanceofarunofrheadsorrtailscomingupisjust????….?,rtimes.Thisis1/2rIfwetossourcoinN>rtimesthereareNdifferentpossiblestartingpointsforarunofheadsortailsOurchanceofarunoflengthrisincreasedtoaboutN1/2r

ArunoflengthrisgoingtobecomelikelywhenN1/2risroughlyequalto1,thatiswhenN=2r.Notethat32=25Winning(andLosing)StreaksTheNasserHussainEffectEnglandcricketcaptainDuring2000-2001Athertontookoverforonegameafterhehadlost7andwonthetossNormalservicewasthenresumedThereisa1in214=16384chanceoflosingall14tossesButhecaptainedEngland101timesandthereisachanceofabout1in180ofalosingstreakof14“Flippinguseless,Nasser!”BBCCanYouAlwaysWin?Oravoideverlosing?TheWin-WinScenarioTheoddsfortherunnersarea1to1,a2to1,a3to1,andsoon,foranynumberofrunnersintherace.Iftheoddsare5to4thenweexpressthatasanaiof5/4to1Betafraction1/(ai+1)ofthetotalstakemoneyontherunnerwithoddsofaito1IfthereareNrunners,wewillalwaysmakeaprofitifQ=1/(a1+1)+1/(a2+1)+1/(a3+1)+….+1/(aN+1)<1

Winnings=(1/Q–1)ourtotalstakeExample:Fourrunnersandtheoddsforeachare6to1,7to2,2to1,and8to1and.Thenwehavea1=6,a2=7/2,a3=2anda4=8andQ=1/7+2/9+1/3+1/9=51/63<1Allocateourstakemoneywith1/7onrunner1,2/9onrunner2,1/3onrunner3,and1/9onrunner4Wewillwinatleast12/51ofthemoneywestaked(andofcoursewegetourstakemoneybackaswell).RaceFixing‘101’ThefavouriteisalwaysthelargestcontributortoQbecausea1isthesmallestoftheaisWecouldhaveQ>1withallrunnersincludedQ=1/(a1+1)+1/(a2+1)+…..>1Butifyouknowthefavouritehasbeenhobbledthenyou

calculateQexcludinga1whichcanresultinQfix=1/(a2+1)+1/(a3+1)+….<1Ifthereare4runnerswithodds3to1,7to1,3to2,and1to1Q=1/4+1/8+2/5+1/2=51/40>1Sowecan’tguaranteeawinningreturnDopethefavouriteandplaceyoumoneyontheotherthreerunnersonly,betting1/4ofourstakemoneyonrunner1,1/8onrunner2,and2/5onrunner3Youarereallybettingona3-horseracewithQfix=1/4+1/8+2/5=31/40<1Whatevertheoutcomeyouwillneverdoworsethanwinningyourstakemoneyplus

{(40/31)-1}Stakemoney=9/31Stakemoney

OutcomeBookmaker1’soddsBookmaker2’soddsOxfordwin1.251.43Cambridgewin3.92.85QofBookie11.056>1Hegains5.6%QofBookie2Hegains5.1%1.051>1AMixedStrategyBackOxfordwithBk2andCambridgewithBk1

Q=1.43-1+3.9-1

Q

=0.956<1Youcanearn4.6%Bet100onOxfordwithbookie2and100x1.43/3.9=36.67onCambridgeatbookie1.

IfOxfordwin,youcollect100x1.43=143frombookie2.IfCambridgewin,youcouldcollect36.67x3.9=143frombookie1.Youinvested136.67andcollect143,aprofitof6.33(4.6%)nomatterwhattheoutcome.WhenBookiesDisagreeWhatAbouttheQ>1SituationsThisisthemoney-launderingcaseYouareguaranteedalossof(1-1/Q)ofyourstakemoneyThatisthecostofthelaunderingandcarriesnoriskofgreaterlossWeirdJudgingMeansIceSkatingLadiesFigureSkatingSaltLakeCityOlympicsSkaterShortLongTotalKwan0.52.02.5Hughes2.01.03.0Cohen1.53.04.5Slutskaya1.0??Beforethelastcompetitorskates…LowestscoresleadSkaterShortLongTotalHughes2.01.03.0Slutskaya1.02.03.0Kwan0.53.03.5Cohen1.54.05.5AndafterSlutskayaskates…Hugheswinsbytie-break!Slut

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論