2022-2023學年陜西省西安三中高考數(shù)學四模試卷含解析_第1頁
2022-2023學年陜西省西安三中高考數(shù)學四模試卷含解析_第2頁
2022-2023學年陜西省西安三中高考數(shù)學四模試卷含解析_第3頁
2022-2023學年陜西省西安三中高考數(shù)學四模試卷含解析_第4頁
2022-2023學年陜西省西安三中高考數(shù)學四模試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023年高考數(shù)學模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知圓M:x2+y2-2ay=0a>0截直線x+y=0A.內(nèi)切 B.相交 C.外切 D.相離2.執(zhí)行如圖所示的程序框圖后,輸出的值為5,則的取值范圍是().A. B. C. D.3.已知平面向量,,滿足:,,則的最小值為()A.5 B.6 C.7 D.84.某歌手大賽進行電視直播,比賽現(xiàn)場有名特約嘉賓給每位參賽選手評分,場內(nèi)外的觀眾可以通過網(wǎng)絡(luò)平臺給每位參賽選手評分.某選手參加比賽后,現(xiàn)場嘉賓的評分情況如下表,場內(nèi)外共有數(shù)萬名觀眾參與了評分,組織方將觀眾評分按照,,分組,繪成頻率分布直方圖如下:嘉賓評分嘉賓評分的平均數(shù)為,場內(nèi)外的觀眾評分的平均數(shù)為,所有嘉賓與場內(nèi)外的觀眾評分的平均數(shù)為,則下列選項正確的是()A. B. C. D.5.設(shè)為等差數(shù)列的前項和,若,,則的最小值為()A. B. C. D.6.已知實數(shù)x,y滿足約束條件,若的最大值為2,則實數(shù)k的值為()A.1 B. C.2 D.7.設(shè)為虛數(shù)單位,則復數(shù)在復平面內(nèi)對應(yīng)的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.已知復數(shù)z1=3+4i,z2=a+i,且z1是實數(shù),則實數(shù)a等于()A. B. C.- D.-9.公比為2的等比數(shù)列中存在兩項,,滿足,則的最小值為()A. B. C. D.10.已知,是兩條不重合的直線,,是兩個不重合的平面,則下列命題中錯誤的是()A.若,,則或B.若,,,則C.若,,,則D.若,,則11.過拋物線C:y2=4x的焦點F,且斜率為的直線交C于點M(M在x軸的上方),l為C的準線,點N在l上且MN⊥l,則M到直線NF的距離為()A. B. C. D.12.已知數(shù)列中,,(),則等于()A. B. C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.已知不等式的解集不是空集,則實數(shù)的取值范圍是;若不等式對任意實數(shù)恒成立,則實數(shù)的取值范圍是___14.已知函數(shù)圖象上一點處的切線方程為,則_______.15.拋物線的焦點坐標為______.16.現(xiàn)有一塊邊長為a的正方形鐵片,鐵片的四角截去四個邊長均為x的小正方形,然后做成一個無蓋方盒,該方盒容積的最大值是________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)(本小題滿分12分)已知橢圓C:x2a2+y(1)求橢圓C的標準方程;(2)過點A(1,0)的直線與橢圓C交于點M,N,設(shè)P為橢圓上一點,且OM+ON=t18.(12分)等差數(shù)列的公差為2,分別等于等比數(shù)列的第2項,第3項,第4項.(1)求數(shù)列和的通項公式;(2)若數(shù)列滿足,求數(shù)列的前2020項的和.19.(12分)如圖,在三棱柱ABC﹣A1B1C1中,A1A⊥平面ABC,∠ACB=90°,AC=CB=C1C=1,M,N分別是AB,A1C的中點.(1)求證:直線MN⊥平面ACB1;(2)求點C1到平面B1MC的距離.20.(12分)已知都是大于零的實數(shù).(1)證明;(2)若,證明.21.(12分)已知函數(shù).(1)若,證明:當時,;(2)若在只有一個零點,求的值.22.(10分)如圖,在四棱錐中,平面,四邊形為正方形,點為線段上的點,過三點的平面與交于點.將①,②,③中的兩個補充到已知條件中,解答下列問題:(1)求平面將四棱錐分成兩部分的體積比;(2)求直線與平面所成角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】化簡圓M:x2+(y-a)2=a又N(1,1),r2、C【解析】

框圖的功能是求等比數(shù)列的和,直到和不滿足給定的值時,退出循環(huán),輸出n.【詳解】第一次循環(huán):;第二次循環(huán):;第三次循環(huán):;第四次循環(huán):;此時滿足輸出結(jié)果,故.故選:C.【點睛】本題考查程序框圖的應(yīng)用,建議數(shù)據(jù)比較小時,可以一步一步的書寫,防止錯誤,是一道容易題.3、B【解析】

建立平面直角坐標系,將已知條件轉(zhuǎn)化為所設(shè)未知量的關(guān)系式,再將的最小值轉(zhuǎn)化為用該關(guān)系式表達的算式,利用基本不等式求得最小值.【詳解】建立平面直角坐標系如下圖所示,設(shè),,且,由于,所以..所以,即..當且僅當時取得最小值,此時由得,當時,有最小值為,即,,解得.所以當且僅當時有最小值為.故選:B【點睛】本小題主要考查向量的位置關(guān)系、向量的模,考查基本不等式的運用,考查數(shù)形結(jié)合的數(shù)學思想方法,屬于難題.4、C【解析】

計算出、,進而可得出結(jié)論.【詳解】由表格中的數(shù)據(jù)可知,,由頻率分布直方圖可知,,則,由于場外有數(shù)萬名觀眾,所以,.故選:B.【點睛】本題考查平均數(shù)的大小比較,涉及平均數(shù)公式以及頻率分布直方圖中平均數(shù)的計算,考查計算能力,屬于基礎(chǔ)題.5、C【解析】

根據(jù)已知條件求得等差數(shù)列的通項公式,判斷出最小時的值,由此求得的最小值.【詳解】依題意,解得,所以.由解得,所以前項和中,前項的和最小,且.故選:C【點睛】本小題主要考查等差數(shù)列通項公式和前項和公式的基本量計算,考查等差數(shù)列前項和最值的求法,屬于基礎(chǔ)題.6、B【解析】

畫出約束條件的可行域,利用目標函數(shù)的幾何意義,求出最優(yōu)解,轉(zhuǎn)化求解即可.【詳解】可行域如圖中陰影部分所示,,,要使得z能取到最大值,則,當時,x在點B處取得最大值,即,得;當時,z在點C處取得最大值,即,得(舍去).故選:B.【點睛】本題考查由目標函數(shù)最值求解參數(shù)值,數(shù)形結(jié)合思想,分類討論是解題的關(guān)鍵,屬于中檔題.7、A【解析】

利用復數(shù)的除法運算化簡,求得對應(yīng)的坐標,由此判斷對應(yīng)點所在象限.【詳解】,對應(yīng)的點的坐標為,位于第一象限.故選:A.【點睛】本小題主要考查復數(shù)除法運算,考查復數(shù)對應(yīng)點所在象限,屬于基礎(chǔ)題.8、A【解析】分析:計算,由z1,是實數(shù)得,從而得解.詳解:復數(shù)z1=3+4i,z2=a+i,.所以z1,是實數(shù),所以,即.故選A.點睛:本題主要考查了復數(shù)共軛的概念,屬于基礎(chǔ)題.9、D【解析】

根據(jù)已知條件和等比數(shù)列的通項公式,求出關(guān)系,即可求解.【詳解】,當時,,當時,,當時,,當時,,當時,,當時,,最小值為.故選:D.【點睛】本題考查等比數(shù)列通項公式,注意為正整數(shù),如用基本不等式要注意能否取到等號,屬于基礎(chǔ)題.10、D【解析】

根據(jù)線面平行和面面平行的性質(zhì),可判定A;由線面平行的判定定理,可判斷B;C中可判斷,所成的二面角為;D中有可能,即得解.【詳解】選項A:若,,根據(jù)線面平行和面面平行的性質(zhì),有或,故A正確;選項B:若,,,由線面平行的判定定理,有,故B正確;選項C:若,,,故,所成的二面角為,則,故C正確;選項D,若,,有可能,故D不正確.故選:D【點睛】本題考查了空間中的平行垂直關(guān)系判斷,考查了學生邏輯推理,空間想象能力,屬于中檔題.11、C【解析】

聯(lián)立方程解得M(3,),根據(jù)MN⊥l得|MN|=|MF|=4,得到△MNF是邊長為4的等邊三角形,計算距離得到答案.【詳解】依題意得F(1,0),則直線FM的方程是y=(x-1).由得x=或x=3.由M在x軸的上方得M(3,),由MN⊥l得|MN|=|MF|=3+1=4又∠NMF等于直線FM的傾斜角,即∠NMF=60°,因此△MNF是邊長為4的等邊三角形點M到直線NF的距離為故選:C.【點睛】本題考查了直線和拋物線的位置關(guān)系,意在考查學生的計算能力和轉(zhuǎn)化能力.12、A【解析】

分別代值計算可得,觀察可得數(shù)列是以3為周期的周期數(shù)列,問題得以解決.【詳解】解:∵,(),

,

,

…,

∴數(shù)列是以3為周期的周期數(shù)列,

,

,

故選:A.【點睛】本題考查數(shù)列的周期性和運用:求數(shù)列中的項,考查運算能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

利用絕對值的幾何意義,確定出的最小值,然后根據(jù)題意即可得到的取值范圍化簡不等式,求出的最大值,然后求出結(jié)果【詳解】的最小值為,則要使不等式的解集不是空集,則有化簡不等式有,即而當時滿足題意,解得或所以答案為【點睛】本題主要考查的是函數(shù)恒成立的問題和絕對值不等式,要注意到絕對值的幾何意義,數(shù)形結(jié)合來解答本題,注意去絕對值時的分類討論化簡14、1【解析】

求出導函數(shù),由切線方程得切線斜率和切點坐標,從而可求得.【詳解】由題意,∵函數(shù)圖象在點處的切線方程為,∴,解得,∴.故答案為:1.【點睛】本題考查導數(shù)的幾何意義,求出導函數(shù)是解題基礎(chǔ),15、【解析】

變換得到,計算焦點得到答案.【詳解】拋物線的標準方程為,,所以焦點坐標為.故答案為:【點睛】本題考查了拋物線的焦點坐標,屬于簡單題.16、【解析】

由題意容積,求導研究單調(diào)性,分析即得解.【詳解】由題意:容積,,則,由得或(舍去),令則為V在定義域內(nèi)唯一的極大值點也是最大值點,此時.故答案為:【點睛】本題考查了導數(shù)在實際問題中的應(yīng)用,考查了學生數(shù)學建模,轉(zhuǎn)化劃歸,數(shù)學運算的能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)x24+【解析】試題分析:本題主要考查橢圓的標準方程及其幾何性質(zhì)、直線與橢圓的位置關(guān)系等基礎(chǔ)知識,考查學生的分析問題解決問題的能力、轉(zhuǎn)化能力、計算能力.第一問,先利用離心率、a2=b2+c2、四邊形的面積列出方程,解出a和b的值,從而得到橢圓的標準方程;第二問,討論直線MN的斜率是否存在,當直線MN的斜率存在時,直線方程與橢圓方程聯(lián)立,消參,利用韋達定理,得到x1+x2、x1x試題解析:(1)∵e=22,??∴又S=12×2a×2b=4∴橢圓C的標準方程為x2(2)由題意知,當直線MN斜率存在時,設(shè)直線方程為y=k(x-1),M(x聯(lián)立方程x24+因為直線與橢圓交于兩點,所以Δ=16k∴x又∵OM∴因為點P在橢圓x24+即2k又∵|OM即|NM|<4化簡得:13k4-5k2∵t2=1-當直線MN的斜率不存在時,M(1,??62∴t∈[-1,??考點:橢圓的標準方程及其幾何性質(zhì)、直線與橢圓的位置關(guān)系.18、(1),;(2).【解析】

(1)根據(jù)題意同時利用等差、等比數(shù)列的通項公式即可求得數(shù)列和的通項公式;(2)求出數(shù)列的通項公式,再利用錯位相減法即可求得數(shù)列的前2020項的和.【詳解】(1)依題意得:,所以,所以解得設(shè)等比數(shù)列的公比為,所以又(2)由(1)知,因為①當時,②由①②得,,即,又當時,不滿足上式,.數(shù)列的前2020項的和設(shè)③,則④,由③④得:,所以,所以.【點睛】本題考查等差數(shù)列和等比數(shù)列的通項公式、性質(zhì),錯位相減法求和,考查學生的邏輯推理能力,化歸與轉(zhuǎn)化能力及綜合運用數(shù)學知識解決問題的能力.考查的核心素養(yǎng)是邏輯推理與數(shù)學運算.是中檔題.19、(1)證明見解析.(2)【解析】

(1)連接AC1,BC1,結(jié)合中位線定理可證MN∥BC1,再結(jié)合線面垂直的判定定理和線面垂直的性質(zhì)分別求證AC⊥BC1,BC1⊥B1C,即可求證直線MN⊥平面ACB1;(2)作交于點,通過等體積法,設(shè)C1到平面B1CM的距離為h,則有,結(jié)合幾何關(guān)系即可求解【詳解】(1)證明:連接AC1,BC1,則N∈AC1且N為AC1的中點;∵M是AB的中點.所以:MN∥BC1;∵A1A⊥平面ABC,AC?平面ABC,∴A1A⊥AC,在三棱柱ABC﹣A1B1C1中,AA1∥CC,∴AC⊥CC1,∵∠ACB=90°,BC∩CC1=C,BC?平面BB1C1C,CC1?平面BB1C1C,∴AC⊥平面BB1C1C,BC?平面BB1C1C,∴AC⊥BC1;又MN∥BC1∴AC⊥MN,∵CB=C1C=1,∴四邊形BB1C1C正方形,∴BC1⊥B1C,∴MN⊥B1C,而AC∩B1C=C,且AC?平面ACB1,CB1?平面ACB1,∴MN⊥平面ACB1,(2)作交于點,設(shè)C1到平面B1CM的距離為h,因為MP,所以?MP,因為CM,B1C;B1M,所以所以:CM?B1M.因為,所以,解得所以點,到平面的距離為【點睛】本題主要考查面面垂直的證明以及點到平面的距離,一般證明面面垂直都用線面垂直轉(zhuǎn)化為面面垂直,而點到面的距離常用體積轉(zhuǎn)化來求,屬于中檔題20、(1)答案見解析.(2)答案見解析【解析】

(1)利用基本不等式可得,兩式相加即可求解.(2)由(1)知,代入不等式,利用基本不等式即可求解.【詳解】(1)兩式相加得(2)由(1)知于是,.【點睛】本題考查了基本不等式的應(yīng)用,屬于基礎(chǔ)題.21、(1)見解析;(2)【解析】

分析:(1)先構(gòu)造函數(shù),再求導函數(shù),根據(jù)導函數(shù)不大于零得函數(shù)單調(diào)遞減,最后根據(jù)單調(diào)性證得不等式;(2)研究零點,等價研究的零點,先求導數(shù):,這里產(chǎn)生兩個討論點,一個是a與零,一個是x與2,當時,,沒有零點;當時,先減后增,從而確定只有一個零點的必要條件,再利用零點存在定理確定條件的充分性,即得a的值.詳解:(1)當時,等價于.設(shè)函數(shù),則.當時,,所以在單調(diào)遞減.而,故當時,,即.(2)設(shè)函數(shù).在只有一個零點當且僅當在只有一個零點.(i)當時,,沒有零點;(ii)當時,.當時,;當時,.所以在單調(diào)遞減,在單調(diào)遞增.故是在的最小值.①若,即,在沒有零點;②若,即

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論