版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,點M是AB上的一點,點N是CB上的一點,,當∠CAN與△CMB中的一個角相等時,則BM的值為()A.3或4 B.或4 C.或6 D.4或62.如圖,在△OAB中,∠AOB=55°,將△OAB在平面內(nèi)繞點O順時針旋轉(zhuǎn)到△OA′B′的位置,使得BB′∥AO,則旋轉(zhuǎn)角的度數(shù)為()A.125° B.70° C.55° D.15°3.如圖,△ABC的內(nèi)切圓⊙O與BC、CA、AB分別相切于點D、E、F,且AB=5,BC=13,CA=12,則陰影部分(即四邊形AEOF)的面積是()A.4 B.6.25 C.7.5 D.94.二次函數(shù)的大致圖象如圖所示,其對稱軸為直線,點A的橫坐標滿足,圖象與軸相交于兩點,與軸相交于點.給出下列結(jié)論:①;②;③若,則;④.其中正確的個數(shù)是()A.1 B.2 C.3 D.45.將拋物線先向左平移一個單位,再向上平移兩個單位,兩次平移后得到的拋物線解析式為()A. B. C. D.6.將方程x2-6x+3=0左邊配成完全平方式,得到的方程是(
)A.(x-3)2=-3
B.(x-3)2=6
C.(x-3)2=3
D.(x-3)2=127.如圖,A、D是⊙O上的兩點,BC是直徑,若∠D=40°,則∠ACO=()A.80° B.70° C.60° D.50°8.下列命題正確的是(
)A.圓是軸對稱圖形,任何一條直徑都是它的對稱軸B.平分弦的直徑垂直于弦,并且平分弦所對的弧C.相等的圓心角所對的弧相等,所對的弦相等D.同弧或等弧所對的圓周角相等9.如圖,在⊙O中,AB⊥OC,垂足為點D,AB=8,CD=2,若點P是優(yōu)弧上的任意一點,則sin∠APB=()A. B. C. D.10.若一次函數(shù)的圖像經(jīng)過第一、二、四象限,則下列不等式中總是成立的是()A. B. C. D.11.下面哪個圖形不是正方體的平面展開圖()A. B.C. D.12.如圖,在平行四邊形中,點在邊上,,連接交于點,則的面積與的面積之比為()A. B. C. D.二、填空題(每題4分,共24分)13.下面是“用三角板畫圓的切線”的畫圖過程.如圖1,已知圓上一點A,畫過A點的圓的切線.畫法:(1)如圖2,將三角板的直角頂點放在圓上任一點C(與點A不重合)處,使其一直角邊經(jīng)過點A,另一條直角邊與圓交于B點,連接AB;(2)如圖3,將三角板的直角頂點與點A重合,使一條直角邊經(jīng)過點B,畫出另一條直角邊所在的直線AD.所以直線AD就是過點A的圓的切線.請回答:該畫圖的依據(jù)是______________________________________.14.一個正n邊形的一個外角等于72°,則n的值等于_____.15.在中,,點、分別在邊、上,,(如圖),沿直線翻折,翻折后的點落在內(nèi)部的點,直線與邊相交于點,如果,那么__________.16.如圖,若△ADE∽△ACB,且=,DE=10,則BC=________17.如圖,點A的坐標是(2,0),△ABO是等邊三角形,點B在第一象限,若反比例函數(shù)的圖象經(jīng)過點B,則k的值是_____.18.拋物線y=x2+2x+3的頂點坐標是_____________.三、解答題(共78分)19.(8分)如圖,AB為⊙O的直徑,C是⊙O上一點,過點C的直線交AB的延長線于點D,AE⊥DC,垂足為E,F(xiàn)是AE與⊙O的交點,AC平分∠BAE(1)求證:DE是⊙O的切線;(2)若AE=6,∠D=30°,求圖中陰影部分的面積.20.(8分)如圖,以40m/s的速度將小球沿與地面30°角的方向擊出時,小球的飛行路線是一段拋物線.如果不考慮空氣阻力,小球的飛行高度h(單位:m)與飛行時間t(單位:s)之間的函數(shù)關(guān)系式為h=20t-(t≥0).回答問題:(1)小球的飛行高度能否達到19.5m;(2)小球從最高點到落地需要多少時間?21.(8分)已知關(guān)于x的一元二次方程x2+(2m+1)x+m2+m=1.求證:無論m為何值,方程總有兩個不相等的實數(shù)根.22.(10分)如圖,AB是⊙O的直徑,CD是⊙O的一條弦,且CD⊥AB于點E.(1)求證:∠BCO=∠D;(2)若CD=,AE=2,求⊙O的半徑.23.(10分)如圖,點分別在的邊上,已知.(1)求證:.(2)若,求的長.24.(10分)已知,且2x+3y﹣z=18,求4x+y﹣3z的值.25.(12分)如圖,與交于點,過點,交與點,交與點F,,,,.(1)求證:(2)若,求證:26.定義:如果函數(shù)C:()的圖象經(jīng)過點(m,n)、(-m,-n),那么我們稱函數(shù)C為對稱點函數(shù),這對點叫做對稱點函數(shù)的友好點.例如:函數(shù)經(jīng)過點(1,2)、(-1,-2),則函數(shù)是對稱點函數(shù),點(1,2)、(-1,-2)叫做對稱點函數(shù)的友好點.(1)填空:對稱點函數(shù)一個友好點是(3,3),則b=,c=;(2)對稱點函數(shù)一個友好點是(2b,n),當2b≤x≤2時,此函數(shù)的最大值為,最小值為,且=4,求b的值;(3)對稱點函數(shù)()的友好點是M、N(點M在點N的上方),函數(shù)圖象與y軸交于點A.把線段AM繞原點O順時針旋轉(zhuǎn)90°,得到它的對應(yīng)線段A′M′.若線段A′M′與該函數(shù)的圖象有且只有一個公共點時,結(jié)合函數(shù)圖象,直接寫出a的取值范圍.
參考答案一、選擇題(每題4分,共48分)1、D【分析】分兩種情形:當時,,設(shè),,可得,解出值即可;當時,過點作,可得,得出,,則,證明,得出方程求解即可.【詳解】解:在Rt△ABC中,∠ACB=90°,AC=1,BC=8,∴,AB=10,,設(shè),,①當時,可得,,,,.②當時,如圖2中,過點作,可得,,,,,,,,,,,,.綜上所述,或1.故選:D.【點睛】本題考相似三角形的判定和性質(zhì),解題的關(guān)鍵是學(xué)會用分類討論的思想思考問題,學(xué)會添加常用輔助線,構(gòu)造相似三角形解決問題.2、B【分析】據(jù)兩直線平行,內(nèi)錯角相等可得,根據(jù)旋轉(zhuǎn)的性質(zhì)可得,然后利用等腰三角形兩底角相等可得,即可得到旋轉(zhuǎn)角的度數(shù).【詳解】,,又,中,,旋轉(zhuǎn)角的度數(shù)為.故選:.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),等腰三角形兩底角相等的性質(zhì),熟記性質(zhì)并準確識圖是解題的關(guān)鍵.3、A【分析】先利用勾股定理判斷△ABC為直角三角形,且∠BAC=90°,繼而證明四邊形AEOF為正方形,設(shè)⊙O的半徑為r,利用面積法求出r的值即可求得答案.【詳解】∵AB=5,BC=13,CA=12,∴AB2+AC2=BC2,∴△ABC為直角三角形,且∠BAC=90°,∵⊙O為△ABC內(nèi)切圓,∴∠AFO=∠AEO=90°,且AE=AF,∴四邊形AEOF為正方形,設(shè)⊙O的半徑為r,∴OE=OF=r,∴S四邊形AEOF=r2,連接AO,BO,CO,∴S△ABC=S△AOB+S△AOC+S△BOC,∴,∴r=2,∴S四邊形AEOF=r2=4,故選A.【點睛】本題考查了三角形的內(nèi)切圓,勾股定理的逆定理,正方形判定與性質(zhì),面積法等,正確把握相關(guān)知識是解題的關(guān)鍵.4、C【分析】根據(jù)對稱軸的位置、開口方向、與y軸的交點可對①②④進行判斷,根據(jù),轉(zhuǎn)化為代數(shù),計算的值對③進行判斷即可.【詳解】解:①∵拋物線開口向下,∴,∵拋物線對稱軸為直線,∴,∴∴,故①正確,②∵,,∴,又∵拋物線與y軸交于負半軸,∴,∴,故②錯誤,③∵點C(0,c),,點A在x軸正半軸,∴A,代入得:,化簡得:,又∵,∴即,故③正確,④由②可得,當x=1時,,∴,即,故④正確,所以正確的是①③④,故答案為C.【點睛】本題考查了二次函數(shù)中a,b,c系數(shù)的關(guān)系,根據(jù)圖象得出a,b,c的的關(guān)系是解題的關(guān)鍵.5、A【分析】按照“左加右減,上加下減”的規(guī)律,進而得出平移后拋物線的解析式即可.【詳解】拋物線先向左平移1個單位得到解析式:,再向上平移2個單位得到拋物線的解析式為:.
故選:.【點睛】此題考查了拋物線的平移變換以及拋物線解析式的變化規(guī)律:左加右減,上加下減.6、B【解析】試題分析:移項,得x2-1x=-3,等式兩邊同時加上一次項系數(shù)一半的平方(-3)2,得x2-1x+(-3)2=-3+(-3)2,即(x-3)2=1.故選B.點睛:配方法的一般步驟:(1)把常數(shù)項移到等號的右邊;(2)把二次項的系數(shù)化為1;(3)等式兩邊同時加上一次項系數(shù)一半的平方.7、D【分析】根據(jù)圓周角的性質(zhì)可得∠ABC=∠D,再根據(jù)直徑所對圓周角是直角,即可得出∠ACO的度數(shù).【詳解】∵∠D=40°,∴∠AOC=2∠D=80°,∵OA=OC,∴∠ACO=∠OAC=(180°﹣∠AOC)=50°,故選:D.【點睛】本題考查圓周角的性質(zhì),關(guān)鍵在于熟練掌握圓周角的性質(zhì),特別是直徑所對的圓周角是直角.8、D【分析】根據(jù)圓的對稱性、圓周角定理、垂徑定理逐項判斷即可.【詳解】解:A.圓是軸對稱圖形,它有無數(shù)條對稱軸,其對稱軸是直徑所在的直線或過圓心的直線,此命題不正確;B.平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的弧,此命題不正確;C.在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,此命題不正確;D.同弧或等弧所對的圓周角相等,此命題正確;故選:D.【點睛】本題考查的知識點是圓的對稱性、圓周角定理以及垂徑定理,需注意的是對稱軸是一條直線并非是線段,而圓的兩條直徑互相平分但不一定垂直.9、B【分析】如圖,連接OA,OB.設(shè)OA=OB=x.利用勾股定理構(gòu)建方程求出x,再證明∠APB=∠AOD即可解決問題.【詳解】如圖,連接OA,OB.設(shè)OA=OB=x.∵OC⊥AB,∴AD=DB=4,在Rt△AOD中,則有x2=42+(x﹣2)2,∴x=5,∵OA=OB,OD⊥AB,∴∠AOD=∠BOD,∵∠APB=∠AOB=∠AOD,∴sin∠APB=sin∠AOD==,故選:B.【點睛】考查了圓周角定理和解直角三角形等知識,解題的關(guān)鍵是熟練靈活運用其相關(guān)知識.10、C【分析】首先判斷a、b的符號,再一一判斷即可解決問題.【詳解】∵一次函數(shù)y=ax+b的圖象經(jīng)過第一、二、四象限,∴a<0,b>0,故A錯誤;,故B錯誤;a2+b>0,故C正確,a+b不一定大于0,故D錯誤.故選:C.【點睛】本題考查一次函數(shù)與不等式,解題的關(guān)鍵是學(xué)會根據(jù)函數(shù)圖象的位置,確定a、b的符號,屬于中考常考題型.11、A【分析】根據(jù)正方體展開圖的11種形式,對各選項分析判斷即可得解.【詳解】解:A、不是正方體展開圖,符合題意;B、是正方體展開圖,不符合題意;C、是正方體展開圖,不符合題意;D、是正方體展開圖,不符合題意.故選:A.【點睛】本題主要考查了正方體的展開圖,從實物出發(fā),結(jié)合具體的問題,辨析幾何體的展開圖,通過結(jié)合立體圖形與平面圖形的轉(zhuǎn)化,建立空間觀念,是解決此類問題的關(guān)鍵.12、C【分析】先求出,再根據(jù)平行四邊形的性質(zhì)可得AB∥CD,AB=CD,從而證出△BAF∽△DEF,,然后根據(jù)相似三角形的性質(zhì)即可求出結(jié)論.【詳解】解:∵∴∴∵四邊形ABCD是平行四邊形∴AB∥CD,AB=CD∴△BAF∽△DEF,∴故選C.【點睛】此題考查的是平行四邊形的性質(zhì)和相似三角形的判定及性質(zhì),掌握平行四邊形的性質(zhì)、利用平行證相似和相似三角形的面積比等于相似比的平方是解決此題的關(guān)鍵.二、填空題(每題4分,共24分)13、90°的圓周角所對的弦是直徑,經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線【詳解】解:利用90°的圓周角所對的弦是直徑可得到AB為直徑,根據(jù)經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線可判斷直線AD就是過點A的圓的切線.故答案為90°的圓周角所對的弦是直徑,經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線.點睛:本題考查了復(fù)雜作圖:復(fù)雜作圖是在五種基本作圖的基礎(chǔ)上進行作圖,一般是結(jié)合了幾何圖形的性質(zhì)和基本作圖方法.解決此類題目的關(guān)鍵是熟悉基本幾何圖形的性質(zhì),結(jié)合幾何圖形的基本性質(zhì)把復(fù)雜作圖拆解成基本作圖,逐步操作.14、1.【分析】可以利用多邊形的外角和定理求解.【詳解】解:∵正n邊形的一個外角為72°,∴n的值為360°÷72°=1.故答案為:1【點睛】本題考查了多邊形外角和,熟記多邊形的外角和等于360度是解題的關(guān)鍵.15、【分析】設(shè),,可得,由折疊的性質(zhì)可得,,根據(jù)相似三角形的性質(zhì)可得,即,即可求的值.【詳解】根據(jù)題意,標記下圖∵,∴∵∴設(shè),∴∵由折疊得到∴,∴,且∴∴∴∴∴∴故答案為.【點睛】本題考查了三角形的折疊問題,理解折疊后的等量關(guān)系,利用代數(shù)式求出的值即可.16、15【分析】根據(jù)相似三角形的性質(zhì),列出比例式即可解決問題.【詳解】解:∵△ADE∽△ACB,∴,DE=10,∴,∴.【點睛】本題考查了相似三角形的性質(zhì),解題的關(guān)鍵是熟練掌握相似三角形的性質(zhì).17、.【分析】已知△ABO是等邊三角形,通過作高BC,利用等邊三角形的性質(zhì)可以求出OB和OC的長度;由于Rt△OBC中一條直角邊和一條斜邊的長度已知,根據(jù)勾股定理還可求出BC的長度,進而確定點B的坐標;將點B的坐標代入反比例函數(shù)的解析式中,即可求出k的值.【詳解】過點B作BC垂直O(jiān)A于C,∵點A的坐標是(2,0),∴AO=2,∵△ABO是等邊三角形,∴OC=1,BC=,∴點B的坐標是把代入,得故答案為.【點睛】考查待定系數(shù)法確定反比例函數(shù)的解析式,只需求出反比例函數(shù)圖象上一點的坐標;18、(﹣1,2)【詳解】解:將二次函數(shù)轉(zhuǎn)化成頂點式可得:y=,則函數(shù)的頂點坐標為(-1,2)故答案為:(-1,2)【點睛】本題考查二次函數(shù)的頂點坐標.三、解答題(共78分)19、(1)證明見解析;(2)陰影部分的面積為.【分析】(1)連接OC,先證明∠OAC=∠OCA,進而得到OC∥AE,于是得到OC⊥CD,進而證明DE是⊙O的切線;(2)分別求出△OCD的面積和扇形OBC的面積,利用S陰影=S△COD﹣S扇形OBC即可得到答案.【詳解】解:(1)連接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠BAE,∴∠OAC=∠CAE,∴∠OCA=∠CAE,∴OC∥AE,∴∠OCD=∠E,∵AE⊥DE,∴∠E=90°,∴∠OCD=90°,∴OC⊥CD,∵點C在圓O上,OC為圓O的半徑,∴CD是圓O的切線;(2)在Rt△AED中,∵∠D=30°,AE=6,∴AD=2AE=12,在Rt△OCD中,∵∠D=30°,∴DO=2OC=DB+OB=DB+OC,∴DB=OB=OC=AD=4,DO=8,∴CD=∴S△OCD==8,∵∠D=30°,∠OCD=90°,∴∠DOC=60°,∴S扇形OBC=×π×OC2=,∵S陰影=S△COD﹣S扇形OBC∴S陰影=8﹣,∴陰影部分的面積為8﹣.20、(1)19.5m;(2)2s【分析】(1)根據(jù)拋物線解析式,先求出拋物線的定點,判斷小球最高飛行高度,從而判斷能否達到19.5m;(2)根據(jù)定點坐標知道,小球飛從地面飛行至最高點需要2s,根據(jù)二次函數(shù)的對稱性,可知從最高落在地面,也需要2s.【詳解】(1)h=20t-由二次函數(shù)可知:拋物線開口向下,且頂點坐標為(2,20),可知小球的飛行高度為h=20m>19.5m所以小球的飛行高度能否達到19.5m;(2)根據(jù)拋物線的對稱性可知,小球從最高點落到地面需要的時間與小球從地面上到最高點的時間相等.因為由二次函數(shù)的頂點坐標可知當t=2s時小球達到最高點,所以小球從最高點到落地需要2s.【點睛】本題考查二次函數(shù)的實際運用,解題關(guān)鍵是將二次函數(shù)轉(zhuǎn)化為頂點式,得出頂點坐標,然后分析求解.21、見解析【分析】根據(jù)方程的系數(shù)結(jié)合根的判別式,即可得出△=1>1,由此即可證出:無論實數(shù)m取什么值,方程總有兩個不相等的實數(shù)根.【詳解】解:證明:在方程x2+(2m+1)x+m2+m=1中,△=b2-4ac=(2m+1)2-4×1×(m2+m)=1>1,
∴無論實數(shù)m取什么值,方程總有兩個不相等的實數(shù)根.【點睛】本題考查了根的判別式,解題的關(guān)鍵是熟練掌握“當△>1時,方程有兩個不相等的實數(shù)根”.22、(1)見解析;(2)1.【解析】試題分析:根據(jù)OC=OB得到∠BCO=∠B,根據(jù)弧相等得到∠B=∠D,從而得到答案;根據(jù)題意得出CE的長度,設(shè)半徑為r,則OC=r,OE=r-2,根據(jù)Rt△OCE的勾股定理得出半徑.試題解析:(1)證明:∵OC=OB,∴∠BCO=∠B∵,∴∠B=∠D,∴∠BCO=∠D.(2)解:∵AB是⊙O的直徑,CD⊥AB,∴CE=.在Rt△OCE中,OC2=CE2+OE2,設(shè)⊙O的半徑為r,則OC=r,OE=OA-AE=r-2,∴,解得:r=1,∴⊙O的半徑為1考點:圓的基本性質(zhì)23、(1)證明見解析(2)【分析】(1)根據(jù)三角形內(nèi)角和定理以及相似三角形的判定定理即可求出答案;(2)根據(jù)相似三角形的性質(zhì)即可求出答案.【詳解】解:(1)證明:在中,,∴.又∵在中,,∴,∴(2)∵,∴,∴,∵∴∴【點睛】本題考查了三角形內(nèi)角和定理及相似三角形的判定與性質(zhì),解題的關(guān)鍵是熟練運用相似三角形的性質(zhì)與判定.24、x=4,y=6,z=8.【分析】設(shè)=k,由1x+3y-z=18列出含k的等式,解出k,x,y,z,再代入所求即可.【詳解】解:設(shè)=k,可得:x=1k,y=3k,z=4k,把x=1k,y=3k,z=4k代入1x+3y﹣z=18中,可得:4k+9k﹣4k=18,解得:k=1,所以x=4,y=6,z=8,把x=4,y=6,z=8代入4x+y﹣3z=16+6﹣14=﹣1.【點睛】本題考查的知識點是比例的性質(zhì),解題的關(guān)鍵是熟練的掌握比例的性質(zhì).25、(1)見解析;(2)見解析【分析】(1)根據(jù)兩邊對應(yīng)成比例且夾角相等的兩個三角形相似可證△AOB∽△COD,從而可證∠A=∠D;(2)證明△AOE∽△DOF,△BOE∽△COF,然后根據(jù)相似三角形的對應(yīng)邊成比例解答即可.【詳解】證明:(1)∵,,,,∴,∵∠AOB=∠COD,∴△AOB∽△COD,∴∠A=∠D;(2)∵∠A=∠D,∴AB∥CD,∴△AOE∽△DOF,△BOE∽△COF,∴,,∴,∵,∴【點睛】本題考查了相似三角形的判定與性質(zhì):在判定兩個三角形相似時,應(yīng)注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用,靈活運用相似三角形的性質(zhì)進行幾何證明.26、(1)b=1,c=9;(2)b=0或b=或b=;(3)或【分析】(1)由題可知函數(shù)圖象過點(3,3),(-3
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 陜西電子信息職業(yè)技術(shù)學(xué)院《可信計算實驗》2023-2024學(xué)年第一學(xué)期期末試卷
- 陜西財經(jīng)職業(yè)技術(shù)學(xué)院《電氣控制技術(shù)與PC》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年水利施工項目商務(wù)協(xié)議樣式版B版
- 2024年標準建筑工人單項作業(yè)分包協(xié)議模板一
- 2024年校園食堂餐飲服務(wù)承包合同
- 2024年混凝土作業(yè)人員勞動協(xié)議范本版
- 2024年木材行業(yè)松樹購銷協(xié)議
- 山西運城農(nóng)業(yè)職業(yè)技術(shù)學(xué)院《無機化學(xué)D》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年期海產(chǎn)養(yǎng)殖品買賣協(xié)議范本版B版
- 2024年版店鋪裝修合同2篇
- 2024年南京信息職業(yè)技術(shù)學(xué)院高職單招(英語/數(shù)學(xué)/語文)筆試歷年參考題庫含答案解析
- 2024年汽配行業(yè)分析報告
- 2024年房地產(chǎn)經(jīng)紀協(xié)理考試題庫附參考答案(綜合題)
- 中藥在護理中的應(yīng)用
- 電工基礎(chǔ)技能實訓(xùn)指導(dǎo)書
- 脊柱外科臨床指南
- 萬千教育學(xué)前透視幼兒的戶外學(xué)習
- 《抗菌藥物知識培訓(xùn)》課件
- 2024年北京市安全員A證考試題庫附答案
- 醫(yī)療專業(yè)人員的情緒管理培訓(xùn)
- 森林法培訓(xùn)課件
評論
0/150
提交評論