【全程復(fù)習(xí)方略】學(xué)年高中數(shù)學(xué) 2.2.1橢圓及其標(biāo)準(zhǔn)方程課件 新人教A選修21_第1頁
【全程復(fù)習(xí)方略】學(xué)年高中數(shù)學(xué) 2.2.1橢圓及其標(biāo)準(zhǔn)方程課件 新人教A選修21_第2頁
【全程復(fù)習(xí)方略】學(xué)年高中數(shù)學(xué) 2.2.1橢圓及其標(biāo)準(zhǔn)方程課件 新人教A選修21_第3頁
【全程復(fù)習(xí)方略】學(xué)年高中數(shù)學(xué) 2.2.1橢圓及其標(biāo)準(zhǔn)方程課件 新人教A選修21_第4頁
【全程復(fù)習(xí)方略】學(xué)年高中數(shù)學(xué) 2.2.1橢圓及其標(biāo)準(zhǔn)方程課件 新人教A選修21_第5頁
已閱讀5頁,還剩56頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2.2橢圓2.2.1橢圓及其標(biāo)準(zhǔn)方程問題引航1.橢圓的定義是什么?如何求橢圓的標(biāo)準(zhǔn)方程?2.橢圓的標(biāo)準(zhǔn)方程是什么?它具有什么特征?1.橢圓的定義(1)定義:平面內(nèi)與兩個(gè)定點(diǎn)F1,F2的距離之和等于_____(大于|F1F2|)的點(diǎn)的軌跡.(2)焦點(diǎn):兩個(gè)定點(diǎn)F1,F2.(3)焦距:兩焦點(diǎn)間的距離|F1F2|.(4)幾何表示:|MF1|+|MF2|=___(常數(shù))且2a__|F1F2|.常數(shù)2a>焦點(diǎn)在x軸上焦點(diǎn)在y軸上標(biāo)準(zhǔn)方程________________________________圖形焦點(diǎn)坐標(biāo)__________________________a,b,c的關(guān)系________2.橢圓的標(biāo)準(zhǔn)方程(-c,0),(c,0)(0,-c),(0,c)a2=b2+c21.判一判(正確的打“√”,錯(cuò)誤的打“×”)(1)橢圓的兩種標(biāo)準(zhǔn)方程中,雖然焦點(diǎn)位置不同,但都有a2=b2+c2.()(2)平面內(nèi)到兩個(gè)定點(diǎn)F1,F2的距離之和等于常數(shù)的點(diǎn)的集合是橢圓.()(3)橢圓的特殊形式是圓.()【解析】(1)正確.無論在哪種標(biāo)準(zhǔn)方程中,一定都有a2=b2+c2.(2)錯(cuò)誤.只有常數(shù)大于|F1F2|時(shí),點(diǎn)的集合才是橢圓.(3)錯(cuò)誤.橢圓與圓的概念不同,沒有特殊情況.答案:(1)√(2)×(3)×2.做一做(請把正確的答案寫在橫線上)(1)a=5,c=3,焦點(diǎn)在x軸上的橢圓標(biāo)準(zhǔn)方程為

.(2)方程4x2+9y2=1的焦點(diǎn)坐標(biāo)為

.(3)橢圓的方程為則a=

,b=

,c=

.【解析】(1)由a2=b2+c2,得b2=52-32=42=16,所以橢圓的方程為答案:

(2)由4x2+9y2=1,得所以所以焦點(diǎn)坐標(biāo)為答案:(3)由所以a2=9,b2=4,c2=5.所以a=3,b=2,c=答案:32【要點(diǎn)探究】知識點(diǎn)1橢圓的定義1.對橢圓定義的三點(diǎn)說明(1)橢圓是在平面內(nèi)定義的,所以“平面內(nèi)”這一條件不能忽視.(2)定義中到兩定點(diǎn)的距離之和是常數(shù),而不能是變量.(3)常數(shù)(2a)必須大于兩定點(diǎn)間的距離,否則軌跡不是橢圓,這是判斷一曲線是否為橢圓的限制條件.2.橢圓定義義的兩個(gè)應(yīng)用用(1)若|MF1|+|MF2|=2a(2a>|F1F2|),則動點(diǎn)點(diǎn)M的軌跡是是橢圓.(2)若點(diǎn)M在橢圓上,則|MF1|+|MF2|=2a.【知識拓展】】橢圓的焦點(diǎn)三三角形設(shè)M為橢圓上上任任意一點(diǎn)(不在x軸上上).F1,F2為焦點(diǎn),則△MF1F2為橢圓的焦點(diǎn)點(diǎn)三角形.【微思考】在橢圓的定義義中,動點(diǎn)M到兩定點(diǎn)F1,F2的距離之和等等于常數(shù)(2a)且2a>|F1F2|,若2a=|F1F2|,則M的軌軌跡是什么?若2a<|F1F2|,則M的軌軌跡是什么?提示:當(dāng)2a=|F1F2|時(shí),點(diǎn)M的的軌跡是線段段F1F2;當(dāng)2a<|F1【即時(shí)練】1.橢圓的的左、、右焦點(diǎn)分別別為F1,F2,點(diǎn)P在橢圓圓上,若|PF1|=4,則|PF22.已知橢圓的兩焦點(diǎn)為F1,F2,弦AB過點(diǎn)F1,則△ABF2的周長為_________.【解析】1.由橢圓的的定義知|PF1|+|PF2|=6,所以|PF2|=6-|PF1|=6-4=2.答案:22.由橢圓的的定義知2a=10,△ABF2的周長為|AB|+|AF2|+|BF2|=|AF1|+|AF2|+|BF1|+|BF2|=4a=20.答案:20知識點(diǎn)2橢圓的標(biāo)準(zhǔn)方方程對橢圓標(biāo)準(zhǔn)方方程的三點(diǎn)認(rèn)認(rèn)識(1)標(biāo)準(zhǔn)方方程的幾何特特征:橢圓的的中心在坐標(biāo)標(biāo)原點(diǎn),焦點(diǎn)點(diǎn)在x軸或y軸上.(2)標(biāo)準(zhǔn)方方程的代數(shù)特特征:方程右右邊為1,左左邊是關(guān)于的的平方和,并且且分母為不相相等的正值.(3)a,b,c三個(gè)量量的關(guān)系:橢橢圓的標(biāo)準(zhǔn)方方程中,a表示橢圓上上的點(diǎn)M到兩兩焦點(diǎn)間距離離的和的一半,可借助圖圖形幫助記憶憶.a,b,c(都是正正數(shù))恰是構(gòu)成一個(gè)個(gè)直角三角形形的三條邊,a是斜邊,所以a>b,a>c,且a2=b2+c2.(如圖所示示)【微思考】(1)在橢圓圓的標(biāo)準(zhǔn)方程程中a>b>c一定成立立嗎?提示:不一定,只要要a>b,a>c即可,b,c大小小關(guān)系不定.(2)根據(jù)橢橢圓方程,如如何確定焦點(diǎn)點(diǎn)位置?提示:把方程化為標(biāo)標(biāo)準(zhǔn)形式,x2,y2的分母哪個(gè)大大,焦點(diǎn)就在在相應(yīng)的軸上上.【即時(shí)練】橢圓25x2+16y2=400的焦焦點(diǎn)坐標(biāo)為,焦距為_______.【解析】把方程化為標(biāo)標(biāo)準(zhǔn)式:可知焦點(diǎn)在y軸上,則a2=25,b2=16,所以以c2=25-16=9,則c=3,所所以焦點(diǎn)為(0,±3),焦距為2c=6.答案:(0,±3)6【題型示范】】類型一求橢圓的標(biāo)準(zhǔn)準(zhǔn)方程【典例1】(1)(2014·邵陽陽高二檢測)過點(diǎn)(-3,2)且與與有有相同焦點(diǎn)的橢圓的的方程是()(2)求適合合下列條件的的橢圓的標(biāo)準(zhǔn)準(zhǔn)方程:①兩個(gè)焦點(diǎn)的的坐標(biāo)分別為為(-4,0)和(4,0),且橢橢圓經(jīng)過點(diǎn)(5,0).②焦點(diǎn)在y軸軸上,且經(jīng)過過兩個(gè)點(diǎn)(0,2)和(1,0).③經(jīng)過點(diǎn)和和點(diǎn)【解題探究】】1.題(1)焦點(diǎn)在哪個(gè)個(gè)軸上?2.題①焦點(diǎn)點(diǎn)在x軸上的的橢圓的標(biāo)準(zhǔn)準(zhǔn)方程是怎樣樣的?題②焦點(diǎn)在y軸上的橢圓圓的標(biāo)準(zhǔn)方程程是怎樣的??題③焦點(diǎn)位置置不確定,橢橢圓的標(biāo)準(zhǔn)方方程應(yīng)如何求求?【探究提示】】1.橢圓的焦焦點(diǎn)在x軸上上,因?yàn)橐阎匠讨衳2項(xiàng)的分母較大大.2.①(a>b>0);②(a>b>0);③應(yīng)分焦點(diǎn)在在x軸上,y軸上兩種情情況討論求解解.【自主解答】】(1)選A.由方程可可知,,其焦點(diǎn)的坐坐標(biāo)為即設(shè)所求橢圓方方程為(a>b>0).因?yàn)檫^點(diǎn)(-3,2),,代入方程為為解解得a2=15(a2=3舍去).故方程為(2)①由于于橢圓的焦點(diǎn)點(diǎn)在x軸上,所以設(shè)它的標(biāo)標(biāo)準(zhǔn)方程為(a>b>0).因?yàn)樗詀=5.又c=4,所所以b2=a2-c2=25-16=9.故所求橢圓的的標(biāo)準(zhǔn)方程為為②由于橢圓的的焦點(diǎn)在y軸軸上,所以設(shè)它的標(biāo)標(biāo)準(zhǔn)方程為(a>b>0).由于橢圓經(jīng)過過點(diǎn)(0,2)和(1,,0),所以故所求橢圓的的標(biāo)準(zhǔn)方程為為③方法一:當(dāng)當(dāng)焦點(diǎn)在x軸軸上時(shí),設(shè)橢圓的標(biāo)準(zhǔn)準(zhǔn)方程為(a>>b>0).依題意有解解得故所求橢圓的的標(biāo)準(zhǔn)方程為為當(dāng)焦點(diǎn)在y軸軸上時(shí),設(shè)橢橢圓的標(biāo)準(zhǔn)方方程為(a>b>0).依題意有解解得因?yàn)閍>b>>0,所以無無解.綜上,所求橢橢圓的標(biāo)準(zhǔn)方方程為方法二:設(shè)所所求橢圓的方方程為mx2+ny2=1(m>0,n>0,m≠n),,依題意有解解得所以所求的橢橢圓方程為::【方法技巧】】1.求橢圓方方程的方法方法內(nèi)容適合題型或條件定義法分析條件判斷出點(diǎn)的軌跡是橢圓,然后根據(jù)定義確定方程動點(diǎn)滿足|MA|+|MB|=2a,且2a>|AB|待定系數(shù)法由題設(shè)條件能確定方程類型,設(shè)出標(biāo)準(zhǔn)方程,再代入已知數(shù)據(jù),求出相關(guān)參數(shù)①已知橢圓上的點(diǎn)的坐標(biāo)②已知焦點(diǎn)坐標(biāo)或焦點(diǎn)間距離2.橢圓方程程的設(shè)法技巧巧若橢圓的焦點(diǎn)點(diǎn)位置不確定定,需要分焦焦點(diǎn)在x軸上上和在y軸上上兩種情況討討論,也可設(shè)設(shè)橢圓的方程程為mx2+ny2=1(m>0,n>0,m≠n).【變式訓(xùn)練】】求適合下列條條件的橢圓的的標(biāo)準(zhǔn)方程:(1)兩個(gè)焦焦點(diǎn)的坐標(biāo)分分別是(-2,0),(2,0),橢圓上一點(diǎn)點(diǎn)P到兩焦點(diǎn)點(diǎn)距離之和等等于6,求橢橢圓的方程.(2)橢圓的的焦點(diǎn)為F1(0,-5),F2(0,5),點(diǎn)P(3,4)是橢圓圓上的一個(gè)點(diǎn)點(diǎn),求橢圓的的方程.【解析】(1)由橢圓圓的焦點(diǎn)坐標(biāo)標(biāo)為(-2,0),(2,0),所以可設(shè)橢圓圓的方程為:(a>b>0).因?yàn)?a=6,2c=4,所以a=3,c=2,所以b2=a2-c2=5,所以所求點(diǎn)的的軌跡方程為為:(2)因?yàn)榻菇裹c(diǎn)為F1(0,-5),F(xiàn)2(0,5),可設(shè)橢圓方方程為2a=所以a=c=5,b2=40-25=15,所以橢圓方程程為【補(bǔ)補(bǔ)償償訓(xùn)訓(xùn)練練】】已知知橢橢圓圓(a>>b>>0)上上一一點(diǎn)點(diǎn)P(3,4),,且兩兩焦焦點(diǎn)點(diǎn)分分別別為為F1,F2,若若PF1⊥PF2,試試求求【解題指南】由PF1⊥PF2,可得出求出c的值.再根據(jù)點(diǎn)P在橢圓上,且a2=b2+c2,建立a,b的方程組,求出a,b的值.【解解析析】】因?yàn)闉闄E橢圓圓經(jīng)經(jīng)過過點(diǎn)點(diǎn)P(3,4),所以以又a2=b2+c2,②②設(shè)F1(-c,0),F2(c,0),則因?yàn)闉镻F1⊥PF2,所以以所以以即9-c2=-16.所以以c2=25.所所以以c=5.由①①②②可可得得所以以a2=45,,b2=20.故所所求求橢橢圓圓方方程程為為類型型二二與橢橢圓圓有有關(guān)關(guān)的【典例2】(1)已知點(diǎn)M在橢圓上,MP′垂直于橢圓焦點(diǎn)所在的直線,垂足為P′,并且M為線段PP′的中點(diǎn),則P點(diǎn)的軌跡方程為________.(2)(2013·新課標(biāo)全國卷Ⅰ改編)已知圓M:(x+1)2+y2=1,圓N:(x-1)2+y2=9,動圓P與圓M外切并且與圓N內(nèi)切,圓心P的軌跡為曲線C.求C的方程.【解解題題探探究究】】1.題題(1)動動點(diǎn)點(diǎn)P與與哪哪個(gè)個(gè)動動點(diǎn)點(diǎn)有有關(guān)關(guān)?本本題題可可采采用用什什么么方方法法求求動動點(diǎn)點(diǎn)P的的軌軌跡跡方方程程?2.兩兩圓圓外外切切時(shí)時(shí)能能得得到到什什么么條條件件?內(nèi)內(nèi)切切時(shí)時(shí)能能得得到到什什么么條條件件?【探探究究提提示示】】1.動動點(diǎn)點(diǎn)P與與點(diǎn)點(diǎn)M有有關(guān)關(guān).因因?yàn)闉辄c(diǎn)點(diǎn)M在在已已知知橢橢圓圓上上運(yùn)運(yùn)動動,所所以以本本題題可可采采用用代代入入法法求求動動點(diǎn)點(diǎn)P的的軌軌跡跡方方程程.2.兩兩圓圓外外切切,兩兩圓圓的的圓圓心心距距等等于于半半徑徑之之和和;兩兩圓圓內(nèi)內(nèi)切切,兩兩圓圓的的圓圓心心距距等等于于半半徑徑差差的的絕絕對對值值.【自自主主解解答答】】(1)設(shè)設(shè)點(diǎn)點(diǎn)P的的坐坐標(biāo)標(biāo)為為(x,y),,M點(diǎn)點(diǎn)的的坐坐標(biāo)標(biāo)為為(x0,y0).因?yàn)闉辄c(diǎn)點(diǎn)M在在橢橢圓圓上上,,所所以以因?yàn)闉镸是是線線段段PP′′的的中中點(diǎn)點(diǎn),,所所以以把代代入入得得即x2+y2=36.所以以點(diǎn)點(diǎn)P的的軌軌跡跡方方程程為為x2+y2=36.答案案::x2+y2=36(2)由由已已知知得得圓圓M的的圓圓心心為為M(-1,0),,半半徑徑r1=1;;圓圓N的的圓圓心心為為N(1,0),,半半徑徑r2=3.設(shè)設(shè)圓圓P的的圓圓心心為為P(x,y),半半徑徑為為R.動動圓圓P與與圓圓M外外切切并并且且與與圓圓N內(nèi)內(nèi)切切,,所以以|PM|+|PN|=(R+r1)+(r2-R)=r1+r2=4.由橢橢圓圓定定義義可可知知,,曲曲線線C是是以以M,,N為為左左、、右右焦焦點(diǎn)點(diǎn),,長長半半軸軸長長為為2,,短短半半軸軸長長為為的的橢橢圓圓(左左頂頂點(diǎn)點(diǎn)除除外外),,其其方方程程為為(x≠≠-2).【方法法技巧巧】求解與與橢圓圓相關(guān)關(guān)的軌軌跡問問題的的方法法【變式式訓(xùn)練練】已知兩兩定點(diǎn)點(diǎn)F1(-1,0)【解析析】選C.因?yàn)闉閨F1F2|是|PF1|和|PF2|的等等差中中項(xiàng),所以|PF1|+|PF2|=2|F1F2|=2×2=4>|F1F2|.所以P的軌軌跡應(yīng)應(yīng)是以以F1,F2為焦點(diǎn)點(diǎn)的橢橢圓.這里c=1,a=2.所以軌軌跡方方程為為【補(bǔ)償償訓(xùn)練練】求過點(diǎn)點(diǎn)P(3,0)且與與圓x2+6x+y2-91=0相內(nèi)內(nèi)切的的動圓圓心心的軌軌跡方方程.【解析析】圓方程程配方方整理理得(x+3)2+y2=102,圓心心為C1(-徑為R=10.設(shè)所求動圓圓心為C(x,y),半徑為r,依題意有消去r得R-|PC|=|CC1|?|PC|+|CC1|=R,即|PC|+|CC1|=10.又P(3,0),C1(-3,0),且|PC1|=6<10.可見見C點(diǎn)點(diǎn)是以以P,C1為兩焦焦點(diǎn)的的橢圓圓,且且c=3,2a=10,所以a=5,從從而b=4,故所求求的動動圓圓圓心的的軌跡跡方程程為類型三三求參數(shù)數(shù)的取取值范范圍【典例例3】】(1)已知知方程程表表示示焦點(diǎn)點(diǎn)在y軸上上的橢橢圓,,則m的取值范范圍為為__________.(2)(2014··撫順順高二二檢測測)已已知x2sinαα+y2cosαα=1(0≤αα≤π)表表示焦焦點(diǎn)在在x軸軸上的的橢圓圓.求求α的的取值值范圍圍.【解題題探究究】1.題題(1)已已知橢橢圓標(biāo)標(biāo)準(zhǔn)方方程為為其其中中m,n應(yīng)滿足足什么么條件件?2.題題(2)如如何將將x2sinαα+y2cosαα=1化成成標(biāo)準(zhǔn)準(zhǔn)形式式?【探究究提示示】1.m,n應(yīng)滿滿足條條件若若焦焦點(diǎn)在在x軸軸上,,應(yīng)有有m>n;若若焦點(diǎn)點(diǎn)在y軸上上,應(yīng)應(yīng)有m<n.2.當(dāng)當(dāng)sinαα≠≠0,,cosαα≠≠0時(shí)時(shí),方方程x2sinαα+y2cosαα=1可化為【自主主解答答】(1)由題題意得得:即即所以答案::(2)由題題意可可將已已知方方程化化為因?yàn)闄E橢圓的的焦點(diǎn)點(diǎn)在x軸上上,所以即又因?yàn)闉?≤≤α≤≤π,,所以以即所求求α的的取值值范圍圍是【延伸伸探究究】若把題題(1)中中方程程改為為其其余條條件不變,,求m的取取值范范圍.【解析析】由題意意得①當(dāng)m>0時(shí),,所以②當(dāng)m<0時(shí),,所所以以m<<-1.所以m的取取值范范圍是是【方法法技巧巧】求參數(shù)數(shù)取值值范圍圍的方方法(1)求參參數(shù)的的范圍圍就是是根據(jù)據(jù)條件件列出出參數(shù)數(shù)為未未知量量的不不等式式(組組)或或方程程(組組),,把問問題轉(zhuǎn)轉(zhuǎn)化為為不等等式(組)或方方程(組)的求求解問問題.(2)對于于橢圓圓,如如果焦焦點(diǎn)所所在的的位置置不確確定,,就需需分

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論