版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.如圖,是的直徑,是的弦,已知,則的度數(shù)為()A. B. C. D.2.已知y關(guān)于x的函數(shù)表達(dá)式是,下列結(jié)論不正確的是()A.若,函數(shù)的最大值是5B.若,當(dāng)時,y隨x的增大而增大C.無論a為何值時,函數(shù)圖象一定經(jīng)過點D.無論a為何值時,函數(shù)圖象與x軸都有兩個交點3.下列圖形中,既是軸對稱圖形又是中心對稱圖形的是()A.平行四邊形 B.菱形 C.等邊三角形 D.等腰直角三角形4.如圖,△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,△OAB與△OCD的面積分別是S1和S2,△OAB與△OCD的周長分別是C1和C2,則下列等式一定成立的是()A. B. C. D.5.如圖,將RtABC繞直角項點C順時針旋轉(zhuǎn)90°,得到A'B'C,連接AA',若∠1=20°,則∠B的度數(shù)是()A.70° B.65° C.60° D.55°6.函數(shù)y=mx2+(m+2)x+m+1的圖象與x軸只有一個交點,則m的值為()A.0 B.0或2 C.0或2或﹣2 D.2或﹣27.如圖,在以O(shè)為原點的直角坐標(biāo)系中,矩形OABC的兩邊OC、OA分別在x軸、y軸的正半軸上,反比例函數(shù)(x>0)與AB相交于點D,與BC相交于點E,若BD=3AD,且△ODE的面積是9,則k的值是()A. B. C. D.128.如圖,為的直徑,為上一點,弦平分,交于點,,,則的長為()A.2.2 B.2.5 C.2 D.1.89.正六邊形的周長為12,則它的面積為()A. B. C. D.10.如圖,若A、B、C、D、E,甲、乙、丙、丁都是方格紙中的格點,為使△ABC與△DEF相似,則點F應(yīng)是甲、乙、丙、丁四點中的().A.甲 B.乙 C.丙 D.丁二、填空題(每小題3分,共24分)11.反比例函數(shù)和在第一象限的圖象如圖所示,點A在函數(shù)圖像上,點B在函數(shù)圖像上,AB∥y軸,點C是y軸上的一個動點,則△ABC的面積為_____.12.正六邊形的中心角等于______度.13.一個不透明的布袋里裝有100個只有顏色不同的球,這100個球中有m個紅球通過大量重復(fù)試驗后發(fā)現(xiàn),從布袋中隨機摸出一個球摸到紅球的頻率穩(wěn)定在左右,則m的值約為______.14.已知A、B是線段MN上的兩點,MN=4,MA=1,MB>1.以A為中心順時針旋轉(zhuǎn)點M,以B為中心逆時針旋轉(zhuǎn)點N,使M、N兩點重合成一點C,構(gòu)成△ABC.設(shè)AB=x,請解答:(1)x的取值范圍______;(2)若△ABC是直角三角形,則x的值是______.15.二次函數(shù)的頂點坐標(biāo)___________.16.若關(guān)于x的方程為一元二次方程,則m=__________.17.若,則______.18.關(guān)于x的方程2x2-ax+1=0一個根是1,則它的另一個根為________.三、解答題(共66分)19.(10分)如圖,是一座古拱橋的截面圖,拱橋橋洞的上沿是拋物線形狀,當(dāng)水面的寬度為10m時,橋洞與水面的最大距離是5m.(1)經(jīng)過討論,同學(xué)們得出三種建立平面直角坐標(biāo)系的方案(如圖),你選擇的方案是(填方案一,方案二,或方案三),則B點坐標(biāo)是,求出你所選方案中的拋物線的表達(dá)式;(2)因為上游水庫泄洪,水面寬度變?yōu)?m,求水面上漲的高度.20.(6分)如圖,在平面直角系中,點A在x軸正半軸上,點B在y軸正半軸上,∠ABO=30°,AB=2,以AB為邊在第一象限內(nèi)作等邊△ABC,反比例函數(shù)的圖象恰好經(jīng)過邊BC的中點D,邊AC與反比例函數(shù)的圖象交于點E.(1)求反比例函數(shù)的解析式;(2)求點E的橫坐標(biāo).21.(6分)在中,,以直角邊為直徑作,交于點,為的中點,連接、.(1)求證:為切線.(2)若,填空:①當(dāng)________時,四邊形為正方形;②當(dāng)________時,為等邊三角形.22.(8分)一個不透明的口袋中裝有2個紅球(記為紅球1、紅球2)、1個白球、1個黑球,這些球除顏色外都相同,將球搖勻.(1)從中任意摸出1個球,恰好摸到紅球的概率是;(2)先從中任意摸出1個球,再從余下的3個球中任意摸出1個球,請用列舉法(畫樹狀圖或列表)求兩次都摸到紅球的概率.23.(8分)解方程:(x+3)2=2x+1.24.(8分)如圖,二次函數(shù)的圖象經(jīng)過點與.求a,b的值;點C是該二次函數(shù)圖象上A,B兩點之間的一動點,橫坐標(biāo)為,寫出四邊形OACB的面積S關(guān)于點C的橫坐標(biāo)x的函數(shù)表達(dá)式,并求S的最大值.25.(10分)今年某市為創(chuàng)評“全國文明城市”稱號,周末團市委組織志愿者進(jìn)行宣傳活動.班主任梁老師決定從4名女班干部(小悅、小惠、小艷和小倩)中通過抽簽的方式確定2名女生去參加.抽簽規(guī)則:將4名女班干部姓名分別寫在4張完全相同的卡片正面,把四張卡片背面朝上,洗勻后放在桌面上,梁老師先從中隨機抽取一張卡片,記下姓名,再從剩余的3張卡片中隨機抽取第二張,記下姓名.(1)該班男生“小剛被抽中”是事件,“小悅被抽中”是事件(填“不可能”或“必然”或“隨機”);第一次抽取卡片“小悅被抽中”的概率為;(2)試用畫樹狀圖或列表的方法表示這次抽簽所有可能的結(jié)果,并求出“小惠被抽中”的概率.26.(10分)如圖,在寬為40m,長為64m的矩形地面上,修筑三條同樣寬的道路,每條道路均與矩形地面的一條邊平行,余下的部分作為耕地,要使得耕地的面積為2418m2,則道路的寬應(yīng)為多少?
參考答案一、選擇題(每小題3分,共30分)1、C【分析】根據(jù)圓周角定理即可解決問題.【詳解】∵,∴.故選:C.【點睛】本題考查圓周角定理,解題的關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.2、D【分析】將a的值代入函數(shù)表達(dá)式,根據(jù)二次函數(shù)的圖象與性質(zhì)可判斷A、B,將x=1代入函數(shù)表達(dá)式可判斷C,當(dāng)a=0時,y=-4x是一次函數(shù),與x軸只有一個交點,可判斷D錯誤.【詳解】當(dāng)時,,∴當(dāng)時,函數(shù)取得最大值5,故A正確;當(dāng)時,,∴函數(shù)圖象開口向上,對稱軸為,∴當(dāng)時,y隨x的增大而增大,故B正確;當(dāng)x=1時,,∴無論a為何值,函數(shù)圖象一定經(jīng)過(1,-4),故C正確;當(dāng)a=0時,y=-4x,此時函數(shù)為一次函數(shù),與x軸只有一個交點,故D錯誤;故選D.【點睛】本題考查了二次函數(shù)的圖象與性質(zhì),以及一次函數(shù)與x軸的交點問題,熟練掌握二次函數(shù)的性質(zhì)是解題的關(guān)鍵.3、B【解析】試題解析:A.不是軸對稱圖形,是中心對稱圖形,故此選項錯誤,不合題意;B.是軸對稱圖形,也是中心對稱圖形,故此選項正確,符合題意;C.是軸對稱圖形,不是中心對稱圖形,故此選項錯誤,不合題意;D.無法確定是軸對稱圖形,也不是中心對稱圖形,故此選項錯誤,不合題意.故選B.4、D【解析】A選項,在△OAB∽△OCD中,OB和CD不是對應(yīng)邊,因此它們的比值不一定等于相似比,所以A選項不一定成立;B選項,在△OAB∽△OCD中,∠A和∠C是對應(yīng)角,因此,所以B選項不成立;C選項,因為相似三角形的面積比等于相似比的平方,所以C選項不成立;D選項,因為相似三角形的周長比等于相似比,所以D選項一定成立.故選D.5、B【分析】根據(jù)圖形旋轉(zhuǎn)的性質(zhì)得AC=A′C,∠ACA′=90°,∠B=∠A′B′C,從而得∠AA′C=45°,結(jié)合∠1=20°,即可求解.【詳解】∵將RtABC繞直角項點C順時針旋轉(zhuǎn)90°,得到A'B'C,∴AC=A′C,∠ACA′=90°,∠B=∠A′B′C,∴∠AA′C=45°,∵∠1=20°,∴∠B′A′C=45°-20°=25°,∴∠A′B′C=90°-25°=65°,∴∠B=65°.故選B.【點睛】本題主要考查旋轉(zhuǎn)的性質(zhì),等腰三角形和直角三角形的性質(zhì),掌握等腰三角形和直角三角形的性質(zhì)定理,是解題的關(guān)鍵.6、C【分析】根據(jù)函數(shù)y=mx2+(m+2)x+m+1的圖象與x軸只有一個交點,利用分類討論的方法可以求得m的值,本題得以解決.【詳解】解:∵函數(shù)y=mx2+(m+2)x+m+1的圖象與x軸只有一個交點,∴當(dāng)m=0時,y=2x+1,此時y=0時,x=﹣0.5,該函數(shù)與x軸有一個交點,當(dāng)m≠0時,函數(shù)y=mx2+(m+2)x+m+1的圖象與x軸只有一個交點,則△=(m+2)2﹣4m(m+1)=0,解得,m1=2,m2=﹣2,由上可得,m的值為0或2或﹣2,故選:C.【點睛】本題考查拋物線與x軸的交點,解答本題的關(guān)鍵是明確題意,利用分類討論的數(shù)學(xué)思想解答.7、C【分析】設(shè)B點的坐標(biāo)為(a,b),由BD=3AD,得D(,b),根據(jù)反比例函數(shù)定義求出關(guān)鍵點坐標(biāo),根據(jù)S△ODE=S矩形OCBA-S△AOD-S△OCE-S△BDE=9求出k.【詳解】∵四邊形OCBA是矩形,∴AB=OC,OA=BC,設(shè)B點的坐標(biāo)為(a,b),∵BD=3AD,∴D(,b),∵點D,E在反比例函數(shù)的圖象上,∴=k,∴E(a,
),∵S△ODE=S矩形OCBA-S△AOD-S△OCE-S△BDE=ab-?-?-??(b-)=9,∴k=,故選:C【點睛】考核知識點:反比例函數(shù)系數(shù)k的幾何意義.結(jié)合圖形,分析圖形面積關(guān)系是關(guān)鍵.8、A【分析】連接BD、CD,由勾股定理先求出BD的長,再利用△ABD∽△BED,得出,可解得DE的長.【詳解】連接BD、CD,如圖所示:∵AB為⊙O的直徑,∴∠ADB=90°,∴,∵弦AD平分∠BAC,∴CD=BD=,∴∠CBD=∠DAB,在△ABD和△BED中,∠BAD=∠EBD,∠ADB=∠BDE,∴△ABD∽△BED,∴,即,解得DE=1.1.故選:A.【點睛】此題主要考查了三角形相似的判定和性質(zhì)及圓周角定理,解答此題的關(guān)鍵是得出△ABD∽△BED.9、D【分析】首先根據(jù)題意畫出圖形,即可得△OBC是等邊三角形,又由正六邊形ABCDEF的周長為12,即可求得BC的長,繼而求得△OBC的面積,則可求得該六邊形的面積.【詳解】解:如圖,連接OB,OC,過O作OM⊥BC于M,
∴∠BOC=×360°=60°,
∵OB=OC,∴△OBC是等邊三角形,
∵正六邊形ABCDEF的周長為12,
∴BC=12÷6=2,
∴OB=BC=2,∴BM=BC=1,
∴OM==,
∴S△OBC=×BC×OM=×2×=,
∴該六邊形的面積為:×6=6.
故選:D.【點睛】此題考查了圓的內(nèi)接六邊形的性質(zhì)與等邊三角形的判定與性質(zhì).此題難度不大,注意掌握數(shù)形結(jié)合思想的應(yīng)用.10、A【分析】令每個小正方形的邊長為1,分別求出兩個三角形的邊長,從而根據(jù)相似三角形的對應(yīng)邊成比例即可找到點F對應(yīng)的位置.【詳解】解:根據(jù)題意,△ABC的三邊之比為要使△ABC∽△DEF,則△DEF的三邊之比也應(yīng)為經(jīng)計算只有甲點合適,
故選:A.
【點睛】本題考查了相似三角形的判定定理:
(1)兩角對應(yīng)相等的兩個三角形相似.
(2)兩邊對應(yīng)成比例且夾角相等的兩個三角形相似.
(3)三邊對應(yīng)成比例的兩個三角形相似.二、填空題(每小題3分,共24分)11、1【分析】設(shè)A(m,),B(m,),則AB=-,△ABC的高為m,根據(jù)三角形面積公式計算即可得答案.【詳解】∵A、B分別為、圖象上的點,AB∥y軸,∴設(shè)A(m,),B(m,),∴S△ABC=(-)m=1.故答案為:1【點睛】本題考查反比例函數(shù)圖象上點的坐標(biāo)特征,熟知反比例函數(shù)圖象上點的坐標(biāo)都滿足反比例函數(shù)的解析式是解題關(guān)鍵.12、60°【分析】根據(jù)正n邊形中心角的公式直接求解即可.【詳解】解:正六邊形的圓心角等于一個周角,即為,正六邊形有6個中心角,所以每個中心角=故答案為:60°【點睛】本題考查正六邊形,解答本題的關(guān)鍵是掌握正六邊形的性質(zhì),熟悉正六邊形的中心角的概念13、1【解析】在同樣條件下,大量反復(fù)試驗時,隨機事件發(fā)生的頻率逐漸穩(wěn)定在概率附近,可以從比例關(guān)系入手,列出方程求解.【詳解】根據(jù)題意,得:,解得:,故答案為:1.【點睛】此題主要考查了利用頻率估計概率,大量反復(fù)試驗下頻率穩(wěn)定值即概率用到的知識點為:概率所求情況數(shù)與總情況數(shù)之比.14、1<x<2x或x.【分析】(1)因為所求AB或x在△ABC中,所以可利用三角形三邊之間的關(guān)系即兩邊之和大于第三邊,兩邊之差小于第三邊進(jìn)行解答.(2)應(yīng)該分情況討論,因為不知道在三角形中哪一個是作為斜邊存在的.所以有三種情況,即:①若AC為斜邊,則1=x2+(3-x)2,即x2-3x+4=0,無解;②若AB為斜邊,則x2=(3﹣x)2+1,解得x,滿足1<x<2;③若BC為斜邊,則(3﹣x)2=1+x2,解得:x,滿足1<x<2;【詳解】解:(1)∵M(jìn)N=4,MA=1,AB=x,∴BN=4﹣1﹣x=3﹣x,由旋轉(zhuǎn)的性質(zhì)得:MA=AC=1,BN=BC=3﹣x,由三角形的三邊關(guān)系得,∴x的取值范圍是1<x<2.故答案為:1<x<2;(2)∵△ABC是直角三角形,∴若AC為斜邊,則1=x2+(3﹣x)2,即x2﹣3x+4=0,無解,若AB為斜邊,則x2=(3﹣x)2+1,解得:x,滿足1<x<2,若BC為斜邊,則(3﹣x)2=1+x2,解得:x,滿足1<x<2,故x的值為:x或x.故答案為:x或x.【點睛】本題主要考查了旋轉(zhuǎn)的性質(zhì),一元一次不等式組的應(yīng)用,三角形的三邊關(guān)系,掌握一元一次不等式組的應(yīng)用,旋轉(zhuǎn)的性質(zhì),三角形的三邊關(guān)系是解題的關(guān)鍵.15、(6,3)【分析】利用配方法將二次函數(shù)的解析式化成頂點式即可得出答案.【詳解】由此可得,二次函數(shù)的頂點式為則頂點坐標(biāo)為故答案為:.【點睛】本題考查了頂點式二次函數(shù)的性質(zhì),掌握二次函數(shù)頂點式的性質(zhì)是解題關(guān)鍵.16、-1【分析】根據(jù)一元二次方程的定義:只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是1的整式方程叫一元二次方程進(jìn)行分析即可.【詳解】解:依題意得:|m|=1,且m-1≠0,
解得m=-1.
故答案為:-1.【點睛】本題考查了一元二次方程的定義,關(guān)鍵是掌握一元二次方程必須同時滿足三個條件:①整式方程,即等號兩邊都是整式;方程中如果有分母,那么分母中無未知數(shù);②只含有一個未知數(shù);③未知數(shù)的最高次數(shù)是1.17、-1【分析】由可得,,再代入代數(shù)式計算即可.【詳解】∵,∴,∴原式=,故填:-1.【點睛】本題考查比例的基本性質(zhì),屬于基礎(chǔ)題型.18、.【詳解】試題分析:設(shè)方程的另一個根為m,根據(jù)根與系數(shù)的關(guān)系得到1?m=,解得m=.考點:根與系數(shù)的關(guān)系.三、解答題(共66分)19、(1)方案1;B(5,0);;(2)3.2m.【解析】試題分析:(1)根據(jù)拋物線在坐標(biāo)系的位置,可用待定系數(shù)法求拋物線的解析式.(2)把x=3代入拋物線的解析式,即可得到結(jié)論.試題解析:解:方案1:(1)點B的坐標(biāo)為(5,0),設(shè)拋物線的解析式為:.由題意可以得到拋物線的頂點為(0,5),代入解析式可得:,∴拋物線的解析式為:;(2)由題意:把代入,解得:=3.2,∴水面上漲的高度為3.2m.方案2:(1)點B的坐標(biāo)為(10,0).設(shè)拋物線的解析式為:.由題意可以得到拋物線的頂點為(5,5),代入解析式可得:,∴拋物線的解析式為:;(2)由題意:把代入解得:=3.2,∴水面上漲的高度為3.2m.方案3:(1)點B的坐標(biāo)為(5,),由題意可以得到拋物線的頂點為(0,0).設(shè)拋物線的解析式為:,把點B的坐標(biāo)(5,),代入解析式可得:,∴拋物線的解析式為:;(2)由題意:把代入解得:=,∴水面上漲的高度為3.2m.20、(1);(2).【分析】(1)直接利用等邊三角形的性質(zhì)結(jié)合舉行的判定方法得出D點坐標(biāo)進(jìn)而得出答案;(2)首先求出AC的解析式進(jìn)而將兩函數(shù)聯(lián)立求出E點坐標(biāo)即可.【詳解】解:(1)∵∠ABO=30°,AB=2,∴OA=1,,連接AD.∵△ABC是等邊三角形,點D是BC的中點,∴AD⊥BC,又∠OBD=∠BOA=90°,∴四邊形OBDA是矩形,∴,∴反比例函數(shù)解析式是.(2)由(1)可知,A(1,0),,設(shè)一次函數(shù)解析式為y=kx+b,將A,C代入得,解得,∴.聯(lián)立,消去y,得,變形得x2﹣x﹣1=0,解得,,∵xE>1,∴.【點睛】本題主要考察反比例函數(shù)綜合題,解題關(guān)鍵是熟練掌握計算法則求出AC的解析式.21、(1)證明見解析;(2)①2;②.【分析】(1)連接,,根據(jù)為斜邊的中線得出,進(jìn)而證明得出即得.(2)①根據(jù)正方形的判定,只需要即得;②根據(jù)等邊三角形的判定,只需要即得.【詳解】(1)證明:如圖,連接,.∵為直徑∴∵為斜邊的中線∴∵,∴∴∴為的切線.(2)①當(dāng)DE=2時∵∴∵由(1),得∴∴四邊形為菱形∵∴四邊形為正方形②當(dāng)時∵∴為切線∵由(1),為切線∴∵為的中點∴∵∴∴∵OD=OB∴為等邊三角形【點睛】本題是圓的綜合題型,考查了圓周角定理、切線判定、切線長定理、正方形的判定、等邊三角形的判定及全等三角形的判定及性質(zhì),解題關(guān)鍵是熟知:直徑所對的圓周角是直角,經(jīng)過半徑外端點并且垂直于這條半徑的直線是圓的切線.22、(1)(2)【解析】試題分析:(1)因為總共有4個球,紅球有2個,因此可直接求得紅球的概率;(2)根據(jù)題意,列表表示小球摸出的情況,然后找到共12種可能,而兩次都是紅球的情況有2種,因此可求概率.試題解析:解:(1).(2)用表格列出所有可能的結(jié)果:第二次
第一次
紅球1
紅球2
白球
黑球
紅球1
(紅球1,紅球2)
(紅球1,白球)
(紅球1,黑球)
紅球2
(紅球2,紅球1)
(紅球2,白球)
(紅球2,黑球)
白球
(白球,紅球1)
(白球,紅球2)
(白球,黑球)
黑球
(黑球,紅球1)
(黑球,紅球2)
(黑球,白球)
由表格可知,共有12種可能出現(xiàn)的結(jié)果,并且它們都是等可能的,其中“兩次都摸到紅球”有2種可能.∴P(兩次都摸到紅球)==.考點:概率統(tǒng)計23、x1=﹣3,x2=﹣1.【分析】利用因式分解法解方程即可.【詳解】(x+3)2=2(x+3),(x+3)2﹣2(x+3)=0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《電路分析基礎(chǔ)試題》課件
- 《微觀經(jīng)濟學(xué)》考試試卷試題及參考答案
- 《專業(yè)英語(計算機英語)》復(fù)習(xí)題
- 八下期末考拔高測試卷(5)(原卷版)
- 《誠邀創(chuàng)業(yè)伙伴》課件
- 2012年高考語文試卷(安徽)(解析卷)
- 父母課堂與教育理念分享計劃
- 購物中心導(dǎo)購員服務(wù)總結(jié)
- 水產(chǎn)養(yǎng)殖行業(yè)銷售工作總結(jié)
- 娛樂場館衛(wèi)生要素
- 養(yǎng)老機構(gòu)績效考核及獎勵制度
- 龍巖市2022-2023學(xué)年七年級上學(xué)期期末生物試題【帶答案】
- DB32-T 4750-2024 模塊化裝配式污水處理池技術(shù)要求
- 企業(yè)員工績效管理與員工工作動機的激發(fā)
- 妊娠合并肺結(jié)核的診斷與治療
- 網(wǎng)絡(luò)畫板智慧樹知到期末考試答案2024年
- (正式版)JBT 14544-2024 水下機器人用直流電動機技術(shù)規(guī)范
- 2024年杭州市水務(wù)集團有限公司招聘筆試參考題庫附帶答案詳解
- 2024年江西人民出版社有限責(zé)任公司招聘筆試參考題庫附帶答案詳解
- 職高家長會課件
- CSR法律法規(guī)及其他要求清單(RBA)2024.3
評論
0/150
提交評論