版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022高考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.要得到函數(shù)的圖象,只需將函數(shù)圖象上所有點的橫坐標()A.伸長到原來的2倍(縱坐標不變),再將得到的圖象向右平移個單位長度B.伸長到原來的2倍(縱坐標不變),再將得到的圖像向左平移個單位長度C.縮短到原來的倍(縱坐標不變),再將得到的圖象向左平移個單位長度D.縮短到原來的倍(縱坐標不變),再將得到的圖象向右平移個單位長度2.函數(shù)的對稱軸不可能為()A. B. C. D.3.已知函數(shù)的最小正周期為,為了得到函數(shù)的圖象,只要將的圖象()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度4.已知復數(shù)z滿足(i為虛數(shù)單位),則在復平面內復數(shù)z對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.已知圓M:x2+y2-2ay=0a>0截直線x+y=0A.內切 B.相交 C.外切 D.相離6.在中,內角所對的邊分別為,若依次成等差數(shù)列,則()A.依次成等差數(shù)列 B.依次成等差數(shù)列C.依次成等差數(shù)列 D.依次成等差數(shù)列7.函數(shù)f(x)=2x-3A.[32C.[328.是虛數(shù)單位,則()A.1 B.2 C. D.9.已知正方體的棱長為1,平面與此正方體相交.對于實數(shù),如果正方體的八個頂點中恰好有個點到平面的距離等于,那么下列結論中,一定正確的是A. B.C. D.10.已知實數(shù)、滿足不等式組,則的最大值為()A. B. C. D.11.若不等式在區(qū)間內的解集中有且僅有三個整數(shù),則實數(shù)的取值范圍是()A. B.C. D.12.()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列的前項和為,,且滿足,則數(shù)列的前10項的和為______.14.已知為拋物線:的焦點,過作兩條互相垂直的直線,,直線與交于、兩點,直線與交于、兩點,則的最小值為__________.15.已知三棱錐的四個頂點都在球O的球面上,,,,,E,F(xiàn)分別為,的中點,,則球O的體積為______.16.設等比數(shù)列的前項和為,若,,則__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知正項數(shù)列的前項和.(1)若數(shù)列為等比數(shù)列,求數(shù)列的公比的值;(2)設正項數(shù)列的前項和為,若,且.①求數(shù)列的通項公式;②求證:.18.(12分)已知數(shù)列是公比為正數(shù)的等比數(shù)列,其前項和為,滿足,且成等差數(shù)列.(1)求的通項公式;(2)若數(shù)列滿足,求的值.19.(12分)心形線是由一個圓上的一個定點,當該圓在繞著與其相切且半徑相同的另外一個圓周上滾動時,這個定點的軌跡,因其形狀像心形而得名,在極坐標系中,方程()表示的曲線就是一條心形線,如圖,以極軸所在的直線為軸,極點為坐標原點的直角坐標系中.已知曲線的參數(shù)方程為(為參數(shù)).(1)求曲線的極坐標方程;(2)若曲線與相交于、、三點,求線段的長.20.(12分)設,(1)求的單調區(qū)間;(2)設恒成立,求實數(shù)的取值范圍.21.(12分)設(1)證明:當時,;(2)當時,求整數(shù)的最大值.(參考數(shù)據(jù):,)22.(10分)在三棱錐中,是邊長為的正三角形,平面平面,,M、N分別為、的中點.?(1)證明:;(2)求三棱錐的體積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
分析:根據(jù)三角函數(shù)的圖象關系進行判斷即可.詳解:將函數(shù)圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),
得到再將得到的圖象向左平移個單位長度得到故選B.點睛:本題主要考查三角函數(shù)的圖象變換,結合和的關系是解決本題的關鍵.2.D【解析】
由條件利用余弦函數(shù)的圖象的對稱性,得出結論.【詳解】對于函數(shù),令,解得,當時,函數(shù)的對稱軸為,,.故選:D.【點睛】本題主要考查余弦函數(shù)的圖象的對稱性,屬于基礎題.3.A【解析】
由的最小正周期是,得,即,因此它的圖象向左平移個單位可得到的圖象.故選A.考點:函數(shù)的圖象與性質.【名師點睛】三角函數(shù)圖象變換方法:4.D【解析】
根據(jù)復數(shù)運算,求得,再求其對應點即可判斷.【詳解】,故其對應點的坐標為.其位于第四象限.故選:D.【點睛】本題考查復數(shù)的運算,以及復數(shù)對應點的坐標,屬綜合基礎題.5.B【解析】化簡圓M:x2+(y-a)2=a又N(1,1),r6.C【解析】
由等差數(shù)列的性質、同角三角函數(shù)的關系以及兩角和的正弦公式可得,由正弦定理可得,再由余弦定理可得,從而可得結果.【詳解】依次成等差數(shù)列,,正弦定理得,由余弦定理得,,即依次成等差數(shù)列,故選C.【點睛】本題主要考查等差數(shù)列的定義、正弦定理、余弦定理,屬于難題.解三角形時,有時可用正弦定理,有時也可用余弦定理,應注意用哪一個定理更方便、簡捷.如果式子中含有角的余弦或邊的二次式,要考慮用余弦定理;如果遇到的式子中含有角的正弦或邊的一次式時,則考慮用正弦定理;以上特征都不明顯時,則要考慮兩個定理都有可能用到.7.A【解析】
根據(jù)冪函數(shù)的定義域與分母不為零列不等式組求解即可.【詳解】因為函數(shù)y=2x-3解得x≥32且∴函數(shù)f(x)=2x-3+1【點睛】定義域的三種類型及求法:(1)已知函數(shù)的解析式,則構造使解析式有意義的不等式(組)求解;(2)對實際問題:由實際意義及使解析式有意義構成的不等式(組)求解;(3)若已知函數(shù)fx的定義域為a,b,則函數(shù)fgx8.C【解析】
由復數(shù)除法的運算法則求出,再由模長公式,即可求解.【詳解】由.故選:C.【點睛】本題考查復數(shù)的除法和模,屬于基礎題.9.B【解析】
此題畫出正方體模型即可快速判斷m的取值.【詳解】如圖(1)恰好有3個點到平面的距離為;如圖(2)恰好有4個點到平面的距離為;如圖(3)恰好有6個點到平面的距離為.所以本題答案為B.【點睛】本題以空間幾何體為載體考查點,面的位置關系,考查空間想象能力,考查了學生靈活應用知識分析解決問題的能力和知識方法的遷移能力,屬于難題.10.A【解析】
畫出不等式組所表示的平面區(qū)域,結合圖形確定目標函數(shù)的最優(yōu)解,代入即可求解,得到答案.【詳解】畫出不等式組所表示平面區(qū)域,如圖所示,由目標函數(shù),化為直線,當直線過點A時,此時直線在y軸上的截距最大,目標函數(shù)取得最大值,又由,解得,所以目標函數(shù)的最大值為,故選A.【點睛】本題主要考查簡單線性規(guī)劃求解目標函數(shù)的最值問題.其中解答中正確畫出不等式組表示的可行域,利用“一畫、二移、三求”,確定目標函數(shù)的最優(yōu)解是解答的關鍵,著重考查了數(shù)形結合思想,及推理與計算能力,屬于基礎題.11.C【解析】
由題可知,設函數(shù),,根據(jù)導數(shù)求出的極值點,得出單調性,根據(jù)在區(qū)間內的解集中有且僅有三個整數(shù),轉化為在區(qū)間內的解集中有且僅有三個整數(shù),結合圖象,可求出實數(shù)的取值范圍.【詳解】設函數(shù),,因為,所以,或,因為時,,或時,,,其圖象如下:當時,至多一個整數(shù)根;當時,在內的解集中僅有三個整數(shù),只需,,所以.故選:C.【點睛】本題考查不等式的解法和應用問題,還涉及利用導數(shù)求函數(shù)單調性和函數(shù)圖象,同時考查數(shù)形結合思想和解題能力.12.B【解析】
利用復數(shù)代數(shù)形式的乘除運算化簡得答案.【詳解】.故選B.【點睛】本題考查復數(shù)代數(shù)形式的乘除運算,考查了復數(shù)的基本概念,是基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.1【解析】
由得時,,兩式作差,可求得數(shù)列的通項公式,進一步求出數(shù)列的和.【詳解】解:數(shù)列的前項和為,,且滿足,①當時,,②①-②得:,整理得:(常數(shù)),故數(shù)列是以為首項,2為公比的等比數(shù)列,所以(首項不符合通項),故,所以:,故答案為:1.【點睛】本題主要考查數(shù)列的通項公式的求法及應用,數(shù)列的前項和的公式,屬于基礎題.14.16.【解析】由題意可知拋物線的焦點,準線為設直線的解析式為∵直線互相垂直∴的斜率為與拋物線的方程聯(lián)立,消去得設點由跟與系數(shù)的關系得,同理∵根據(jù)拋物線的性質,拋物線上的點到焦點的距離等于到準線的距離∴,同理∴,當且僅當時取等號.故答案為16點睛:(1)與拋物線有關的最值問題,一般情況下都與拋物線的定義有關.利用定義可將拋物線上的點到焦點的距離轉化為到準線的距離,可以使運算化繁為簡.“看到準線想焦點,看到焦點想準線”,這是解決拋物線焦點弦有關問題的重要途徑;(2)圓錐曲線中的最值問題,可利用基本不等式求解,但要注意不等式成立的條件.15.【解析】
可證,則為的外心,又則平面即可求出,的值,再由勾股定理求出外接球的半徑,最后根據(jù)體積公式計算可得.【詳解】解:,,,因為為的中點,所以為的外心,因為,所以點在內的投影為的外心,所以平面,平面,所以,所以,又球心在上,設,則,所以,所以球O體積,.故答案為:【點睛】本題考查多面體外接球體積的求法,考查空間想象能力與思維能力,考查計算能力,屬于中檔題.16.【解析】
由題意,設等比數(shù)列的公比為,根據(jù)已知條件,列出方程組,求得的值,利用求和公式,即可求解.【詳解】由題意,設等比數(shù)列的公比為,因為,即,解得,,所以.【點睛】本題主要考查了等比數(shù)列的通項公式,及前n項和公式的應用,其中解答中根據(jù)等比數(shù)列的通項公式,正確求解首項和公比是解答本題的關鍵,著重考查了推理與計算能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)①;②詳見解析.【解析】
(1)依題意可表示,,相減得,由等比數(shù)列通項公式轉化為首項與公比,解得答案,并由其都是正項數(shù)列舍根;(2)①由題意可表示,,兩式相減得,由其都是正項并整理可得遞推關系,由等差數(shù)列的通項公式即可得答案;②由已知關系,表示并相減即可表示遞推關系,顯然當時,成立,當,時,表示,由分組求和與正項數(shù)列性質放縮不等式得證.【詳解】解:(1)依題意可得,,兩式相減,得,所以,因為,所以,且,解得.(2)①因為,所以,兩式相減,得,即.因為,所以,即.而當時,,可得,故,所以對任意的正整數(shù)都成立,所以數(shù)列是等差數(shù)列,公差為1,首項為1,所以數(shù)列的通項公式為.②因為,所以,兩式相減,得,即,所以對任意的正整數(shù),都有.令,而當時,顯然成立,所以當,時,,所以,即,所以,得證.【點睛】本題考查由前n項和關系求等比數(shù)列公比,求等差數(shù)列通項公式,還考查了由分組求和表示數(shù)列和并由正項數(shù)列放縮證明不等式,屬于難題.18.(1)(2)【解析】
(1)由公比表示出,由成等差數(shù)列可求得,從而數(shù)列的通項公式;(2)求(1)得,然后對和式兩兩并項后利用等差數(shù)列的前項和公式可求解.【詳解】(1)∵是等比數(shù)列,且成等差數(shù)列∴,即∴,解得:或∵,∴∵∴(2)∵∴【點睛】本題考查等比數(shù)列的通項公式,考查并項求和法及等差數(shù)列的項和公式.本題求數(shù)列通項公式所用方法為基本量法,求和是用并項求和法.數(shù)列的求和除公式法外,還有錯位相關法、裂項相消法、分組(并項)求和法等等.19.(1)();(2).【解析】
(1)化簡得到直線方程為,再利用極坐標公式計算得到答案.(2)聯(lián)立方程計算得到,,計算得到答案.【詳解】(1)由消得,即,是過原點且傾斜角為的直線,∴的極坐標方程為().(2)由得,∴,由得∴,∴.【點睛】本題考查了參數(shù)方程,極坐標方程,意在考查學生的計算能力和應用能力.20.(1)單調遞增區(qū)間為,單調遞減區(qū)間為;(2)【解析】
(1),令,解不等式即可;(2),令得,即,且的最小值為,令,結合即可解決.【詳解】(1),當時,,遞增,當時,,遞減.故的單調遞增區(qū)間為,單調遞減區(qū)間為.(2),,,設的根為,即有可得,,當時,,遞減,當時,,遞增.,所以,①當;②當時,設,遞增,,所以.綜上,.【點睛】本題考查了利用導數(shù)研究函數(shù)單調性以及函數(shù)恒成立問題,這里要強調一點,處理恒成立問題時,通常是構造函數(shù),將問題轉化為函數(shù)的極值或最值來處理.21.(1)證明見解析;(2).【解析】
(1)將代入函數(shù)解析式可得,構造函數(shù),求得并令,由導函數(shù)符號判斷函數(shù)單調性并求得最大值,由即可證明恒成立,即不等式得證.(2)對函數(shù)求導,變形后討論當時的函數(shù)單調情況:當時,可知滿足題意;將不等式化簡后構造函數(shù),利用導函數(shù)求得極值點與函數(shù)的單調性,從而求得最小值為,分別依次代入檢驗的符號,即可確定整數(shù)的最大值;當時不滿足題意,因為求整數(shù)的最大值,所以時無需再討論.【詳解】(1)證明:當時代入可得,令,,則,令解得,當時,所以在單調遞增,當時,所以在單調遞減,所以,則,即成立.(2)函數(shù)則,若時,當時,,則在時單調遞減,所以,即當時成立;所以此時需滿足的整數(shù)解即可,將不等式化簡可得,令則令解得,當時,即在內單調遞減,當時,即在內單調遞增,所以當時取得最小值,則,,,所以此時滿足的整數(shù)的最大值為;當時,在時,此時,與題意矛盾,所以不成立.因為求整數(shù)的最大值,所以時無需再討論,綜上所述,當時,整數(shù)的最大值為.【點睛】本題考查了導數(shù)在證明
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 個人終止勞動協(xié)議
- 難治性傷口病因介紹
- 藥物濫用性頭痛病因介紹
- 7.1《反對黨八股(節(jié)選)》【中職專用】高一語文(高教版2023基礎模塊上冊)
- 七年級政治知識讓人生更美麗2省公開課一等獎全國示范課微課
- 2024-2025學年人教版八年級英語上學期期末真題 專題07 閱讀理解(說明文)(安徽專用)
- 2022-2023學年天津四十七中高三(上)期末語文試卷
- 電子裝接實36課件講解
- 2023年旋渦式鼓風機項目融資計劃書
- 2023年公路養(yǎng)護項目融資計劃書
- 國際經(jīng)濟法智慧樹知到期末考試答案章節(jié)答案2024年中南大學
- GB/T 18488-2024電動汽車用驅動電機系統(tǒng)
- 腫瘤的預防與早診早治
- (高清版)JGJT 178-2009 補償收縮混凝土應用技術規(guī)程
- ISO27001 2022版內審全套資料(內審計劃+檢查表+審核報告等)
- 2024年高中語文選擇性必修下冊理解性默寫含答案
- 大班社會:《我的名片我做主》
- 醫(yī)學檢驗技術創(chuàng)新發(fā)明案例分享
- 部編初中歷史八年級上冊期末專題復習觀點論述題
- 音樂與健康智慧樹知到期末考試答案2024年
- MOOC 寄生人體的惡魔-醫(yī)學寄生蟲學-南方醫(yī)科大學 中國大學慕課答案
評論
0/150
提交評論