黃岡八模系列湖北省黃岡市2025屆數(shù)學(xué)高二上期末檢測模擬試題含解析_第1頁
黃岡八模系列湖北省黃岡市2025屆數(shù)學(xué)高二上期末檢測模擬試題含解析_第2頁
黃岡八模系列湖北省黃岡市2025屆數(shù)學(xué)高二上期末檢測模擬試題含解析_第3頁
黃岡八模系列湖北省黃岡市2025屆數(shù)學(xué)高二上期末檢測模擬試題含解析_第4頁
黃岡八模系列湖北省黃岡市2025屆數(shù)學(xué)高二上期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

黃岡八模系列湖北省黃岡市2025屆數(shù)學(xué)高二上期末檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)直線的傾斜角為,且,則滿足A. B.C. D.2.設(shè)P是雙曲線上的點,若,是雙曲線的兩個焦點,則()A.4 B.5C.8 D.103.已知等差數(shù)列的公差為,前項和為,等比數(shù)列的公比為,前項和為.若,則()A. B.C. D.4.已知圓與直線至少有一個公共點,則的取值范圍為()A. B.C. D.5.已知等比數(shù)列滿足,則()A.168 B.210C.672 D.10506.在四棱錐中,四邊形為菱形,平面,是中點,下列敘述正確的是()A.平面 B.平面C.平面平面 D.平面平面7.已知空間向量,則()A. B.C. D.8.某校為了解學(xué)生學(xué)習的情況,采用分層抽樣的方法從高一人、高二人、高三人中,抽取人進行問卷調(diào)查.已知高二被抽取的人數(shù)為人,那么高三被抽取的人數(shù)為()A. B.C. D.9.設(shè)集合或,,則()A. B.C. D.10.中共一大會址、江西井岡山、貴州遵義、陜西延安是中學(xué)生的幾個重要的研學(xué)旅行地.某中學(xué)在校學(xué)生人,學(xué)校團委為了了解本校學(xué)生到上述紅色基地研學(xué)旅行的情況,隨機調(diào)查了名學(xué)生,其中到過中共一大會址或井岡山研學(xué)旅行的共有人,到過井岡山研學(xué)旅行的人,到過中共一大會址并且到過井岡山研學(xué)旅行的恰有人,根據(jù)這項調(diào)查,估計該學(xué)校到過中共一大會址研學(xué)旅行的學(xué)生大約有()人A. B.C. D.11.甲乙兩個雷達獨立工作,它們發(fā)現(xiàn)飛行目標的概率分別是0.9和0.8,飛行目標被雷達發(fā)現(xiàn)的概率為()A.0.72 B.0.26C.0.7 D.0.9812.點在圓上,點在直線上,則的最小值是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.二項式的展開式中,項的系數(shù)為__________.14.已知圓:和圓:,動圓M同時與圓及圓外切,則動圓的圓心M的軌跡方程為______.15.已知數(shù)列中,,且數(shù)列為等差數(shù)列,則_____________.16.如圖,將一個正方體沿相鄰三個面的對角線截出一個棱錐,若該棱錐的體積為,則該正方體的體對角線長為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓與(1)過點作直線與圓相切,求的方程;(2)若圓與圓相交于、兩點,求的長18.(12分)已知函數(shù),(),(1)若曲線與曲線在它們的交點(1,c)處具有公共切線,求a,b的值(2)當時,若函數(shù)在區(qū)間[k,2]上的最大值為28,求k的取值范圍19.(12分)設(shè)函數(shù)(1)求函數(shù)的單調(diào)區(qū)間;(2)若有兩個零點,,求的取值范圍,并證明:20.(12分)如圖,在空間四邊形中,分別是的中點,分別在上,且(1)求證:四點共面;(2)設(shè)與交于點,求證:三點共線.21.(12分)已知是等差數(shù)列,其n前項和為,已知(1)求數(shù)列的通項公式:(2)設(shè),求數(shù)列的前n項和22.(10分)已知橢圓過點,離心率為(1)求橢圓的標準方程;(2)過橢圓的上頂點作直線l交拋物線于A,B兩點,O為坐標原點①求證:;②設(shè)OA,OB分別與橢圓相交于C,D兩點,過點O作直線CD的垂線OH,垂足為H,證明:為定值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】因為,所以,,,,故選D2、C【解析】根據(jù)雙曲線的定義可得:,結(jié)合雙曲線的方程可得答案.【詳解】由雙曲線可得根據(jù)雙曲線的定義可得:故選:C3、D【解析】用基本量表示可得基本量的關(guān)系式,從而可得,故可得正確的選項.【詳解】若,則,而,此時,這與題設(shè)不合,故,故,故,而,故,此時不確定,故選:D.4、C【解析】利用點到直線距離公式求出圓心到直線的距離范圍,從而求出的取值范圍.【詳解】圓心到直線的距離,當且僅當時等號成立,故只需即可.故選:C5、C【解析】根據(jù)等比數(shù)列的性質(zhì)求得,再根據(jù),即可求得結(jié)果.【詳解】等比數(shù)列滿足,設(shè)等比數(shù)列的公比為q,所以,解得,故,故選:C6、D【解析】利用反證法可判斷A選項;利用面面垂直的性質(zhì)可判斷BC選項;利用面面垂直的判定可判斷D選項.【詳解】對于A選項,因為四邊形為菱形,則,平面,平面,平面,若平面,因為,則平面平面,事實上,平面與平面相交,假設(shè)不成立,A錯;對于B選項,過點在平面內(nèi)作,垂足為點,平面,平面,則,,,平面,而過作平面的垂線,有且只有一條,故與平面不垂直,B錯;對于C選項,過點在平面內(nèi)作,垂足為點,因為平面,平面,則,,,則平面,若平面平面,過點在平面內(nèi)作,垂足為點,因為平面平面,平面平面,平面,平面,而過點作平面的垂線,有且只有一條,即、重合,所以,平面平面,所以,,但四邊形為菱形,、不一定垂直,C錯;對于D選項,因為四邊形為菱形,則,平面,平面,,,平面,因為平面,因此,平面平面平面,D對.故選:D.7、A【解析】求得,即可得出.【詳解】,,,.故選:A.8、C【解析】利用分層抽樣求出的值,進而可求得高三被抽取的人數(shù).【詳解】由分層抽樣可得,可得,設(shè)高三所抽取的人數(shù)為,則,解得.故選:C.9、B【解析】根據(jù)交集的概念和運算直接得出結(jié)果.【詳解】由題意知,.故選:B.10、B【解析】作出韋恩圖,設(shè)調(diào)查的學(xué)生中去過中共一大會址研學(xué)旅行的學(xué)生人數(shù)為,根據(jù)題意求出的值,由此可得出該學(xué)校到過中共一大會址研學(xué)旅行的學(xué)生人數(shù).【詳解】如下圖所示,設(shè)調(diào)查的學(xué)生中去過中共一大會址研學(xué)旅行的學(xué)生人數(shù)為,由題意可得,解的,因此,該學(xué)校到過中共一大會址研學(xué)旅行的學(xué)生的人數(shù)為.故選:B.【點睛】本題考查韋恩圖的應(yīng)用,同時也考查了利用分層抽樣求樣本容量,考查計算能力,屬于基礎(chǔ)題.11、D【解析】利用對立事件的概率求法求飛行目標被雷達發(fā)現(xiàn)的概率.【詳解】由題設(shè),飛行目標不被甲、乙發(fā)現(xiàn)的概率分別為、,所以飛行目標被雷達發(fā)現(xiàn)的概率為.故選:D12、B【解析】根據(jù)題意可知圓心,又由于線外一點到已知直線的垂線段最短,結(jié)合點到直線的距離公式,即可求出結(jié)果.【詳解】由題意可知,圓心,所以圓心到的距離為,所以的最小值為.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、80【解析】利用二項式的通項公式進行求解即可.【詳解】二項式的通項公式為:,令,所以項的系數(shù)為,故答案為:8014、【解析】根據(jù)動圓同時與圓及圓外切,即可得到幾何關(guān)系,再結(jié)合雙曲線的定義可得動點的軌跡方程.【詳解】由題,設(shè)動圓的半徑為,圓的半徑為,圓的半徑為,當動圓與圓,圓外切時,,,所以,因為圓心,,即,又根據(jù)雙曲線的定義,得動點的軌跡為雙曲線的上支,其中,,所以,則動圓圓心的軌跡方程是;故答案為:15、【解析】由題意得:考點:等差數(shù)列通項16、.【解析】先根據(jù)棱錐的體積求出正方體的棱長,進而求出正方體的體對角線長.【詳解】如圖,連接,設(shè)正方體棱長為,則.所以,體對角線.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)或(2)【解析】(1)根據(jù)已知可得圓心與半徑,再利用幾何法可得切線方程;(2)聯(lián)立兩圓方程可得公共弦方程,進而可得弦長.【小問1詳解】解:圓的方程可化為:,即:圓的圓心為,半徑為若直線的斜率不存在,方程為:,與圓相切,滿足條件若直線的斜率存在,設(shè)斜率為,方程為:,即:由與圓相切可得:,解得:所以的方程為:,即:綜上可得的方程為:或【小問2詳解】聯(lián)立兩圓方程得:,消去二次項得所在直線的方程:,圓的圓心到的距離,所以.18、【解析】(1)求a,b的值,根據(jù)曲線與曲線在它們的交點處具有公共切線,可知切點處的函數(shù)值相等,切點處的斜率相等,列方程組,即可求出的值;(2)求k的取值范圍.,先求出的解析式,由已知時,設(shè),求導(dǎo)函數(shù),確定函數(shù)的極值點,進而可得時,函數(shù)在區(qū)間上的最大值為;時,函數(shù)在在區(qū)間上的最大值小于,由此可得結(jié)論試題解析:(1),因為曲線與曲線在它們的交點處具有公共切線,所以,所以;(2)當時,,,,令,則,令,得,所以在與上單調(diào)遞增,在上單調(diào)遞減,其中為極大值,所以如果在區(qū)間最大值為,即區(qū)間包含極大值點,所以考點:導(dǎo)數(shù)的幾何意義,函數(shù)的單調(diào)性與最值19、(1)答案見詳解(2),證明見解析【解析】(1)求導(dǎo)得,,分類討論參數(shù)a的范圍即可判斷單調(diào)區(qū)間;(2)設(shè),,聯(lián)立整理得,構(gòu)造得,構(gòu)造函數(shù),結(jié)合導(dǎo)數(shù)判斷單調(diào)性,進而得證.小問1詳解】由,,可得,當時,,所以在上單調(diào)遞增;當時,令,得,令,得所以在單調(diào)遞減,在單調(diào)遞增;【小問2詳解】證明:因為函數(shù)有兩個零點,由(1)得,此時的遞增區(qū)間為,遞減區(qū)間為,有極小值.所以,可得,所以.由(1)可得的極小值點為,則不妨設(shè).設(shè),,則則,即,整理得,所以,設(shè),則,所以在上單調(diào)遞減,所以,所以,即.20、(1)證明見解析;(2)證明見解析.【解析】(1)根據(jù)題意,利用中位線定理和線段成比例,先證明,進而證明問題;(2)先證明平面,平面,進而證明點P在兩個平面的交線上,然后證得結(jié)論.【小問1詳解】連接分別是的中點,.在中,.所以四點共面.【小問2詳解】,所以,又平面平面,同理:,平面平面,為平面與平面的一個公共點.又平面平面,即三點共線.21、(1);(2).【解析】(1)利用等差數(shù)列的基本量,結(jié)合已知條件,列出方程組,求得首項和公差,即可寫出通項公式;(2)根據(jù)(1)中所求,結(jié)合裂項求和法,即可求得.【小問1詳解】因為是等差數(shù)列,其n前項和為,已知,設(shè)其公差為,故可得:,,解得,又,故.【小問2詳解】由(1)知,,又,故.即.22、(1)(2)①證明見解析;②證

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論