版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年中考數(shù)學(xué)模擬試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.下列四個(gè)圖形中,既是軸對(duì)稱圖形又是中心對(duì)稱圖形的是()A. B. C. D.2.計(jì)算的結(jié)果是().A. B. C. D.3.全球芯片制造已經(jīng)進(jìn)入10納米到7納米器件的量產(chǎn)時(shí)代.中國(guó)自主研發(fā)的第一臺(tái)7納米刻蝕機(jī),是芯片制造和微觀加工最核心的設(shè)備之一,7納米就是0.000000007米.?dāng)?shù)據(jù)0.000000007用科學(xué)記數(shù)法表示為()A.0.7×10﹣8 B.7×10﹣8 C.7×10﹣9 D.7×10﹣104.如圖,分別以等邊三角形ABC的三個(gè)頂點(diǎn)為圓心,以邊長(zhǎng)為半徑畫弧,得到的封閉圖形是萊洛三角形,若AB=2,則萊洛三角形的面積(即陰影部分面積)為()A. B. C.2 D.25.反比例函數(shù)y=(a>0,a為常數(shù))和y=在第一象限內(nèi)的圖象如圖所示,點(diǎn)M在y=的圖象上,MC⊥x軸于點(diǎn)C,交y=的圖象于點(diǎn)A;MD⊥y軸于點(diǎn)D,交y=的圖象于點(diǎn)B,當(dāng)點(diǎn)M在y=的圖象上運(yùn)動(dòng)時(shí),以下結(jié)論:①S△ODB=S△OCA;②四邊形OAMB的面積不變;③當(dāng)點(diǎn)A是MC的中點(diǎn)時(shí),則點(diǎn)B是MD的中點(diǎn).其中正確結(jié)論的個(gè)數(shù)是()A.0 B.1 C.2 D.36.如圖,把一塊直角三角板的直角頂點(diǎn)放在直尺的一邊上,若∠1=50°,則∠2的度數(shù)為().A.50° B.40° C.30° D.25°7.下列判斷正確的是()A.任意擲一枚質(zhì)地均勻的硬幣10次,一定有5次正面向上B.天氣預(yù)報(bào)說“明天的降水概率為40%”,表示明天有40%的時(shí)間都在降雨C.“籃球隊(duì)員在罰球線上投籃一次,投中”為隨機(jī)事件D.“a是實(shí)數(shù),|a|≥0”是不可能事件8.石墨烯是現(xiàn)在世界上最薄的納米材料,其理論厚度僅是0.00000000034m,這個(gè)數(shù)用科學(xué)記數(shù)法表示正確的是(
)A.3.4×10-9m B.0.34×10-9m C.3.4×10-10m D.3.4×10-11m9.下列計(jì)算正確的是()A.﹣2x﹣2y3?2x3y=﹣4x﹣6y3 B.(﹣2a2)3=﹣6a6C.(2a+1)(2a﹣1)=2a2﹣1 D.35x3y2÷5x2y=7xy10.A,B兩地相距48千米,一艘輪船從A地順流航行至B地,又立即從B地逆流返回A地,共用去9小時(shí),已知水流速度為4千米/時(shí),若設(shè)該輪船在靜水中的速度為x千米/時(shí),則可列方程()A. B.C.+4=9 D.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.下面是“作已知圓的內(nèi)接正方形”的尺規(guī)作圖過程.已知:⊙O.求作:⊙O的內(nèi)接正方形.作法:如圖,(1)作⊙O的直徑AB;(2)分別以點(diǎn)A,點(diǎn)B為圓心,大于12(3)作直線MN與⊙O交于C、D兩點(diǎn),順次連接A、C、B、D.即四邊形ACBD為所求作的圓內(nèi)接正方形.請(qǐng)回答:該尺規(guī)作圖的依據(jù)是_____.12.小明和小亮分別從A、B兩地同時(shí)相向而行,并以各自的速度勻速行駛,途中會(huì)經(jīng)過奶茶店C,小明先到達(dá)奶茶店C,并在C地休息了一小時(shí),然后按原速度前往B地,小亮從B地直達(dá)A地,結(jié)果還是小明先到達(dá)目的地,如圖是小明和小亮兩人之間的距離y(千米)與小亮出發(fā)時(shí)間x(時(shí))的函數(shù)的圖象,請(qǐng)問當(dāng)小明到達(dá)B地時(shí),小亮距離A地_____千米.13.對(duì)角線互相平分且相等的四邊形是()A.菱形 B.矩形 C.正方形 D.等腰梯形14.如圖,已知O為△ABC內(nèi)一點(diǎn),點(diǎn)D、E分別在邊AB和AC上,且,DE∥BC,設(shè)、,那么______(用、表示).15.如圖,在平面直角坐標(biāo)系中,⊙P的圓心在x軸上,且經(jīng)過點(diǎn)A(m,﹣3)和點(diǎn)B(﹣1,n),點(diǎn)C是第一象限圓上的任意一點(diǎn),且∠ACB=45°,則⊙P的圓心的坐標(biāo)是_____.16.有4根細(xì)木棒,長(zhǎng)度分別為2cm、3cm、4cm、5cm,從中任選3根,恰好能搭成一個(gè)三角形的概率是__________.三、解答題(共8題,共72分)17.(8分)(2013年四川綿陽(yáng)12分)如圖,AB是⊙O的直徑,C是半圓O上的一點(diǎn),AC平分∠DAB,AD⊥CD,垂足為D,AD交⊙O于E,連接CE.(1)判斷CD與⊙O的位置關(guān)系,并證明你的結(jié)論;(2)若E是的中點(diǎn),⊙O的半徑為1,求圖中陰影部分的面積.18.(8分)綜合與實(shí)踐﹣﹣旋轉(zhuǎn)中的數(shù)學(xué)問題背景:在一次綜合實(shí)踐活動(dòng)課上,同學(xué)們以兩個(gè)矩形為對(duì)象,研究相似矩形旋轉(zhuǎn)中的問題:已知矩形ABCD∽矩形A′B′C′D′,它們各自對(duì)角線的交點(diǎn)重合于點(diǎn)O,連接AA′,CC′.請(qǐng)你幫他們解決下列問題:觀察發(fā)現(xiàn):(1)如圖1,若A′B′∥AB,則AA′與CC′的數(shù)量關(guān)系是______;操作探究:(2)將圖1中的矩形ABCD保持不動(dòng),矩形A′B′C′D′繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)角度α(0°<α≤90°),如圖2,在矩形A′B′C′D′旋轉(zhuǎn)的過程中,(1)中的結(jié)論還成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由;操作計(jì)算:(3)如圖3,在(2)的條件下,當(dāng)矩形A′B′C′D′繞點(diǎn)O旋轉(zhuǎn)至AA′⊥A′D′時(shí),若AB=6,BC=8,A′B′=3,求AA′的長(zhǎng).19.(8分)【發(fā)現(xiàn)證明】如圖1,點(diǎn)E,F(xiàn)分別在正方形ABCD的邊BC,CD上,∠EAF=45°,試判斷BE,EF,F(xiàn)D之間的數(shù)量關(guān)系.小聰把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,通過證明△AEF≌△AGF;從而發(fā)現(xiàn)并證明了EF=BE+FD.【類比引申】(1)如圖2,點(diǎn)E、F分別在正方形ABCD的邊CB、CD的延長(zhǎng)線上,∠EAF=45°,連接EF,請(qǐng)根據(jù)小聰?shù)陌l(fā)現(xiàn)給你的啟示寫出EF、BE、DF之間的數(shù)量關(guān)系,并證明;【聯(lián)想拓展】(2)如圖3,如圖,∠BAC=90°,AB=AC,點(diǎn)E、F在邊BC上,且∠EAF=45°,若BE=3,EF=5,求CF的長(zhǎng).20.(8分)校車安全是近幾年社會(huì)關(guān)注的重大問題,安全隱患主要是超速和超載.某中學(xué)數(shù)學(xué)活動(dòng)小組設(shè)計(jì)了如下檢測(cè)公路上行駛的汽車速度的實(shí)驗(yàn):先在公路旁邊選取一點(diǎn)C,再在筆直的車道上確定點(diǎn)D,使CD與垂直,測(cè)得CD的長(zhǎng)等于21米,在上點(diǎn)D的同側(cè)取點(diǎn)A、B,使∠CAD=30,∠CBD=60.(1)求AB的長(zhǎng)(精確到0.1米,參考數(shù)據(jù):);(2)已知本路段對(duì)校車限速為40千米/小時(shí),若測(cè)得某輛校車從A到B用時(shí)2秒,這輛校車是否超速?說明理由.21.(8分)已知關(guān)于的一元二次方程(為實(shí)數(shù)且).求證:此方程總有兩個(gè)實(shí)數(shù)根;如果此方程的兩個(gè)實(shí)數(shù)根都是整數(shù),求正整數(shù)的值.22.(10分)如圖,直線y=kx+b(k≠0)與雙曲線y=(m≠0)交于點(diǎn)A(﹣,2),B(n,﹣1).求直線與雙曲線的解析式.點(diǎn)P在x軸上,如果S△ABP=3,求點(diǎn)P的坐標(biāo).23.(12分)如圖,⊙O直徑AB和弦CD相交于點(diǎn)E,AE=2,EB=6,∠DEB=30°,求弦CD長(zhǎng).24.某初中學(xué)校舉行毛筆書法大賽,對(duì)各年級(jí)同學(xué)的獲獎(jiǎng)情況進(jìn)行了統(tǒng)計(jì),并繪制了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中相關(guān)數(shù)據(jù)解答下列問題:請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)全;獲得一等獎(jiǎng)的同學(xué)中有來自七年級(jí),有來自八年級(jí),其他同學(xué)均來自九年級(jí),現(xiàn)準(zhǔn)備從獲得一等獎(jiǎng)的同學(xué)中任選兩人參加市內(nèi)毛筆書法大賽,請(qǐng)通過列表或畫樹狀圖求所選出的兩人中既有七年級(jí)又有九年級(jí)同學(xué)的概率.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
根據(jù)軸對(duì)稱圖形與中心對(duì)稱圖形的概念求解.【詳解】A、不是軸對(duì)稱圖形,是中心對(duì)稱圖形,故此選項(xiàng)不合題意;B、是軸對(duì)稱圖形,不是中心對(duì)稱圖形,故此選項(xiàng)不合題意;C、不是軸對(duì)稱圖形,不是中心對(duì)稱圖形,故此選項(xiàng)不合題意;D、是軸對(duì)稱圖形,是中心對(duì)稱圖形,故此選項(xiàng)符合題意;故選D.【點(diǎn)睛】此題主要考查了中心對(duì)稱圖形與軸對(duì)稱圖形的概念.軸對(duì)稱圖形的關(guān)鍵是尋找對(duì)稱軸,圖形兩部分折疊后可重合,中心對(duì)稱圖形是要尋找對(duì)稱中心,旋轉(zhuǎn)180度后兩部分重合.2、D【解析】
根據(jù)同底數(shù)冪的乘除法運(yùn)算進(jìn)行計(jì)算.【詳解】3x2y2x3y2÷xy3=6x5y4÷xy3=6x4y.故答案選D.【點(diǎn)睛】本題主要考查同底數(shù)冪的乘除運(yùn)算,解題的關(guān)鍵是知道:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加.3、C【解析】
本題根據(jù)科學(xué)記數(shù)法進(jìn)行計(jì)算.【詳解】因?yàn)榭茖W(xué)記數(shù)法的標(biāo)準(zhǔn)形式為a×(1≤|a|≤10且n為整數(shù)),因此0.000000007用科學(xué)記數(shù)法法可表示為7×,故選C.【點(diǎn)睛】本題主要考察了科學(xué)記數(shù)法,熟練掌握科學(xué)記數(shù)法是本題解題的關(guān)鍵.4、D【解析】【分析】萊洛三角形的面積是由三塊相同的扇形疊加而成,其面積=三塊扇形的面積相加,再減去兩個(gè)等邊三角形的面積,分別求出即可.【詳解】過A作AD⊥BC于D,∵△ABC是等邊三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD=1,AD=BD=,∴△ABC的面積為BC?AD==,S扇形BAC==,∴萊洛三角形的面積S=3×﹣2×=2π﹣2,故選D.【點(diǎn)睛】本題考查了等邊三角形的性質(zhì)和扇形的面積計(jì)算,能根據(jù)圖形得出萊洛三角形的面積=三塊扇形的面積相加、再減去兩個(gè)等邊三角形的面積是解此題的關(guān)鍵.5、D【解析】
根據(jù)反比例函數(shù)的性質(zhì)和比例系數(shù)的幾何意義逐項(xiàng)分析可得出解.【詳解】①由于A、B在同一反比例函數(shù)y=圖象上,由反比例系數(shù)的幾何意義可得S△ODB=S△OCA=1,正確;②由于矩形OCMD、△ODB、△OCA為定值,則四邊形MAOB的面積不會(huì)發(fā)生變化,正確;③連接OM,點(diǎn)A是MC的中點(diǎn),則S△ODM=S△OCM=,因S△ODB=S△OCA=1,所以△OBD和△OBM面積相等,點(diǎn)B一定是MD的中點(diǎn).正確;故答案選D.考點(diǎn):反比例系數(shù)的幾何意義.6、B【解析】
解:如圖,由兩直線平行,同位角相等,可求得∠3=∠1=50°,根據(jù)平角為180°可得,∠2=90°﹣50°=40°.故選B.【點(diǎn)睛】本題考查平行線的性質(zhì),掌握兩直線平行,同位角相等是解題關(guān)鍵.7、C【解析】
直接利用概率的意義以及隨機(jī)事件的定義分別分析得出答案.【詳解】A、任意擲一枚質(zhì)地均勻的硬幣10次,一定有5次正面向上,錯(cuò)誤;B、天氣預(yù)報(bào)說“明天的降水概率為40%”,表示明天有40%的時(shí)間都在降雨,錯(cuò)誤;C、“籃球隊(duì)員在罰球線上投籃一次,投中”為隨機(jī)事件,正確;D、“a是實(shí)數(shù),|a|≥0”是必然事件,故此選項(xiàng)錯(cuò)誤.故選C.【點(diǎn)睛】此題主要考查了概率的意義以及隨機(jī)事件的定義,正確把握相關(guān)定義是解題關(guān)鍵.8、C【解析】試題分析:根據(jù)科學(xué)記數(shù)法的概念可知:用科學(xué)記數(shù)法可將一個(gè)數(shù)表示的形式,所以將1.11111111134用科學(xué)記數(shù)法表示,故選C.考點(diǎn):科學(xué)記數(shù)法9、D【解析】
A.根據(jù)同底數(shù)冪乘法法則判斷;B.根據(jù)積的乘方法則判斷即可;C.根據(jù)平方差公式計(jì)算并判斷;D.根據(jù)同底數(shù)冪除法法則判斷.【詳解】A.-2x-2y32x3y=-4xy4,故本選項(xiàng)錯(cuò)誤;B.
(?2a2)3=?8a6,故本項(xiàng)錯(cuò)誤;C.
(2a+1)(2a?1)=4a2?1,故本項(xiàng)錯(cuò)誤;D.35x3y2÷5x2y=7xy,故本選項(xiàng)正確.故答案選D.【點(diǎn)睛】本題考查了同底數(shù)冪的乘除法法則、積的乘方法則與平方差公式,解題的關(guān)鍵是熟練的掌握同底數(shù)冪的乘除法法則、積的乘方法則與平方差公式.10、A【解析】
根據(jù)輪船在靜水中的速度為x千米/時(shí)可進(jìn)一步得出順流與逆流速度,從而得出各自航行時(shí)間,然后根據(jù)兩次航行時(shí)間共用去9小時(shí)進(jìn)一步列出方程組即可.【詳解】∵輪船在靜水中的速度為x千米/時(shí),∴順流航行時(shí)間為:,逆流航行時(shí)間為:,∴可得出方程:,故選:A.【點(diǎn)睛】本題主要考查了分式方程的應(yīng)用,熟練掌握順流與逆流速度的性質(zhì)是解題關(guān)鍵.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、相等的圓心角所對(duì)的弦相等,直徑所對(duì)的圓周角是直角.【解析】
根據(jù)圓內(nèi)接正四邊形的定義即可得到答案.【詳解】到線段兩端距離相等的點(diǎn)在這條線段的中垂線上;兩點(diǎn)確定一條直線;互相垂直的直徑將圓四等分,從而得到答案.【點(diǎn)睛】本題主要考查了圓內(nèi)接正四邊形的定義以及基本性質(zhì),解本題的要點(diǎn)在于熟知相關(guān)基本知識(shí)點(diǎn).12、1【解析】
根據(jù)題意設(shè)小明的速度為akm/h,小亮的速度為bkm/h,求出a,b的值,再代入方程即可解答.【詳解】設(shè)小明的速度為akm/h,小亮的速度為bkm/h,,解得,,當(dāng)小明到達(dá)B地時(shí),小亮距離A地的距離是:120×(3.5﹣1)﹣60×3.5=1(千米),故答案為1.【點(diǎn)睛】此題考查一次函數(shù)的應(yīng)用,解題關(guān)鍵在于列出方程組.13、B【解析】
根據(jù)平行四邊形的判定與矩形的判定定理,即可求得答案.【詳解】∵對(duì)角線互相平分的四邊形是平行四邊形,對(duì)角線相等的平行四邊形是矩形,∴對(duì)角線相等且互相平分的四邊形一定是矩形.故選B.【點(diǎn)睛】此題考查了平行四邊形,矩形,菱形以及等腰梯形的判定定理.此題比較簡(jiǎn)單,解題的關(guān)鍵是熟記定理.14、【解析】
根據(jù),DE∥BC,結(jié)合平行線分線段成比例來求.【詳解】∵,DE∥BC,∴,∴==.∵,∴∴.故答案為:.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是平面向量,解題的關(guān)鍵是熟練的掌握平面向量.15、(2,0)【解析】【分析】作輔助線,構(gòu)建三角形全等,先根據(jù)同弧所對(duì)的圓心角是圓周角的二倍得:∠APB=90°,再證明△BPE≌△PAF,根據(jù)PE=AF=3,列式可得結(jié)論.【詳解】連接PB、PA,過B作BE⊥x軸于E,過A作AF⊥x軸于F,∵A(m,﹣3)和點(diǎn)B(﹣1,n),∴OE=1,AF=3,∵∠ACB=45°,∴∠APB=90°,∴∠BPE+∠APF=90°,∵∠BPE+∠EBP=90°,∴∠APF=∠EBP,∵∠BEP=∠AFP=90°,PA=PB,∴△BPE≌△PAF,∴PE=AF=3,設(shè)P(a,0),∴a+1=3,a=2,∴P(2,0),故答案為(2,0).【點(diǎn)睛】本題考查了圓周角定理和坐標(biāo)與圖形性質(zhì),三角形全等的性質(zhì)和判定,作輔助線構(gòu)建三角形全等是關(guān)鍵.16、【解析】
根據(jù)題意,使用列舉法可得從有4根細(xì)木棒中任取3根的總共情況數(shù)目以及能搭成一個(gè)三角形的情況數(shù)目,根據(jù)概率的計(jì)算方法,計(jì)算可得答案.【詳解】根據(jù)題意,從有4根細(xì)木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4種取法,而能搭成一個(gè)三角形的有2、3、4;3、4、5,2、4、5,三種,得P=.故其概率為:.【點(diǎn)睛】本題考查概率的計(jì)算方法,使用列舉法解題時(shí),注意按一定順序,做到不重不漏.用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.三、解答題(共8題,共72分)17、解:(1)CD與⊙O相切.理由如下:∵AC為∠DAB的平分線,∴∠DAC=∠BAC.∵OA=OC,∴∠OAC=∠OCA.,∴∠DAC=∠OCA.∴OC∥AD.∵AD⊥CD,∴OC⊥CD.∵OC是⊙O的半徑,∴CD與⊙O相切.(2)如圖,連接EB,由AB為直徑,得到∠AEB=90°,∴EB∥CD,F(xiàn)為EB的中點(diǎn).∴OF為△ABE的中位線.∴OF=AE=,即CF=DE=.在Rt△OBF中,根據(jù)勾股定理得:EF=FB=DC=.∵E是的中點(diǎn),∴=,∴AE=EC.∴S弓形AE=S弓形EC.∴S陰影=S△DEC=××=.【解析】(1)CD與圓O相切,理由為:由AC為角平分線得到一對(duì)角相等,再由OA=OC,利用等邊對(duì)等角得到一對(duì)角相等,等量代換得到一對(duì)內(nèi)錯(cuò)角相等,利用內(nèi)錯(cuò)角相等兩直線平行得到OC與AD平行,根據(jù)AD垂直于CD,得到OC垂直于CD,即可得證.(2)根據(jù)E為弧AC的中點(diǎn),得到弧AE=弧EC,利用等弧對(duì)等弦得到AE=EC,可得出弓形AE與弓形EC面積相等,陰影部分面積拼接為直角三角形DEC的面積,求出即可.考點(diǎn):角平分線定義,等腰三角形的性質(zhì),平行的判定和性質(zhì),切線的判定,圓周角定理,三角形中位線定理,勾股定理,扇形面積的計(jì)算,轉(zhuǎn)換思想的應(yīng)用.18、(1)AA′=CC′;(2)成立,證明見解析;(3)AA′=【解析】
(1)連接AC、A′C′,根據(jù)題意得到點(diǎn)A、A′、C′、C在同一條直線上,根據(jù)矩形的性質(zhì)得到OA=OC,OA′=OC′,得到答案;(2)連接AC、A′C′,證明△A′OA≌△C′OC,根據(jù)全等三角形的性質(zhì)證明;(3)連接AC,過C作CE⊥AB′,交AB′的延長(zhǎng)線于E,根據(jù)相似多邊形的性質(zhì)求出B′C′,根據(jù)勾股定理計(jì)算即可.【詳解】(1)AA′=CC′,理由如下:連接AC、A′C′,∵矩形ABCD∽矩形A′B′C′D′,∠CAB=∠C′A′B′,∵A′B′∥AB,∴點(diǎn)A、A′、C′、C在同一條直線上,由矩形的性質(zhì)可知,OA=OC,OA′=OC′,∴AA′=CC′,故答案為AA′=CC′;(2)(1)中的結(jié)論還成立,AA′=CC′,理由如下:連接AC、A′C′,則AC、A′C′都經(jīng)過點(diǎn)O,由旋轉(zhuǎn)的性質(zhì)可知,∠A′OA=∠C′OC,∵四邊形ABCD和四邊形A′B′C′D′都是矩形,∴OA=OC,OA′=OC′,在△A′OA和△C′OC中,,∴△A′OA≌△C′OC,∴AA′=CC′;(3)連接AC,過C作CE⊥AB′,交AB′的延長(zhǎng)線于E,∵矩形ABCD∽矩形A′B′C′D′,∴,即,解得,B′C′=4,∵∠EB′C=∠B′C′C=∠E=90°,∴四邊形B′ECC′為矩形,∴EC=B′C′=4,在Rt△ABC中,AC==10,在Rt△AEC中,AE==2,∴AA′+B′E=2﹣3,又AA′=CC′=B′E,∴AA′=.【點(diǎn)睛】本題考查的是矩形的性質(zhì)、旋轉(zhuǎn)變換的性質(zhì)、全等三角形的判定和性質(zhì),掌握旋轉(zhuǎn)變換的性質(zhì)、矩形的性質(zhì)是解題的關(guān)鍵.19、(1)DF=EF+BE.理由見解析;(2)CF=1.【解析】(1)把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合,證出△AEF≌△AFG,根據(jù)全等三角形的性質(zhì)得出EF=FG,即可得出答案;(2)根據(jù)旋轉(zhuǎn)的性質(zhì)的AG=AE,CG=BE,∠ACG=∠B,∠EAG=90°,∠FCG=∠ACB+∠ACG=∠ACB+∠B=90°,根據(jù)勾股定理有FG2=FC2+CG2=BE2+FC2;關(guān)鍵全等三角形的性質(zhì)得到FG=EF,利用勾股定理可得CF.解:(1)DF=EF+BE.理由:如圖1所示,∵AB=AD,∴把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合,∵∠ADC=∠ABE=90°,∴點(diǎn)C、D、G在一條直線上,∴EB=DG,AE=AG,∠EAB=∠GAD,∵∠BAG+∠GAD=90°,∴∠EAG=∠BAD=90°,∵∠EAF=15°,∴∠FAG=∠EAG﹣∠EAF=90°﹣15°=15°,∴∠EAF=∠GAF,在△EAF和△GAF中,,∴△EAF≌△GAF,∴EF=FG,∵FD=FG+DG,∴DF=EF+BE;(2)∵∠BAC=90°,AB=AC,∴將△ABE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得△ACG,連接FG,如圖2,∴AG=AE,CG=BE,∠ACG=∠B,∠EAG=90°,∴∠FCG=∠ACB+∠ACG=∠ACB+∠B=90°,∴FG2=FC2+CG2=BE2+FC2;又∵∠EAF=15°,而∠EAG=90°,∴∠GAF=90°﹣15°,在△AGF與△AEF中,,∴△AEF≌△AGF,∴EF=FG,∴CF2=EF2﹣BE2=52﹣32=16,∴CF=1.“點(diǎn)睛”本題考查了全等三角形的性質(zhì)和判定,勾股定理,正方形的性質(zhì)的應(yīng)用,正確的作出輔助線構(gòu)造全等三角形是解題的關(guān)鍵,此題是一道綜合題,難度較大,題目所給例題的思路,為解決此題做了較好的鋪墊.20、(1)24.2米(2)超速,理由見解析【解析】
(1)分別在Rt△ADC與Rt△BDC中,利用正切函數(shù),即可求得AD與BD的長(zhǎng),從而求得AB的長(zhǎng).(2)由從A到B用時(shí)2秒,即可求得這輛校車的速度,比較與40千米/小時(shí)的大小,即可確定這輛校車是否超速.【詳解】解:(1)由題意得,在Rt△ADC中,,在Rt△BDC中,,∴AB=AD-BD=(米).(2)∵汽車從A到B用時(shí)2秒,∴速度為24.2÷2=12.1(米/秒),∵12.1米/秒=43.56千米/小時(shí),∴該車速度為43.56千米/小時(shí).∵43.56千米/小時(shí)大于40千米/小時(shí),∴此校車在AB路段超速.21、(1)證明見解析;(2)或.【解析】
(1)求出△的值,再判斷出其符號(hào)即可;(2)先求出x的值,再由方程的兩個(gè)實(shí)數(shù)根都是整數(shù),且m是正整數(shù)求出m的值即可.【詳解】(1)依題意,得,,.∵,∴方程總有兩個(gè)實(shí)數(shù)根.(2)∵,∴,.∵方程的兩個(gè)實(shí)數(shù)根都是整數(shù),且是正整數(shù),∴或.∴或.【點(diǎn)睛】本題考查的是根的判別式,熟知一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac的關(guān)系是解答此題的關(guān)鍵.22、(1)y=﹣2x+1;(2)點(diǎn)P的坐標(biāo)為(﹣,0)或(,0).【解析】
(1)把A的坐標(biāo)代入可求出m,即可求出反比例函數(shù)解析式,把B點(diǎn)的坐標(biāo)代入反比例函數(shù)解析式,即可求出n,把A,B的坐標(biāo)代入一次函數(shù)解析式即可求出一次函數(shù)解析式;(2)利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)C的坐標(biāo),設(shè)點(diǎn)P的坐標(biāo)為(x,0),根據(jù)三角形的面積公式結(jié)合S△ABP=3,即可得出,解之即可得出結(jié)論.【詳解】(1)∵雙曲線y=(m≠0)經(jīng)過點(diǎn)A(﹣,2),∴m=﹣1.∴雙曲線的表達(dá)式為y=﹣.∵點(diǎn)B(n,﹣1)在雙曲線y=﹣上,∴點(diǎn)B的坐標(biāo)為(1,﹣1).∵直線y=kx+b經(jīng)過點(diǎn)A(﹣,2),B(1,﹣1),∴,解得∴直線的表達(dá)式為y=﹣2x+1;(2)當(dāng)y=﹣2x+1=0時(shí),x=,∴點(diǎn)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東理工學(xué)院《能源與動(dòng)力測(cè)試技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東理工職業(yè)學(xué)院《測(cè)量學(xué)實(shí)驗(yàn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東江門幼兒師范高等??茖W(xué)校《影視編劇》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東工貿(mào)職業(yè)技術(shù)學(xué)院《遙感地學(xué)分析與應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東工程職業(yè)技術(shù)學(xué)院《機(jī)器人學(xué)及其應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東財(cái)貿(mào)職業(yè)學(xué)院《反應(yīng)工程概論》2023-2024學(xué)年第一學(xué)期期末試卷
- 新聞拍照培訓(xùn)課件
- 《風(fēng)險(xiǎn)統(tǒng)計(jì)分析》課件
- 廣安職業(yè)技術(shù)學(xué)院《跨屏傳播與營(yíng)銷》2023-2024學(xué)年第一學(xué)期期末試卷
- 贛州職業(yè)技術(shù)學(xué)院《計(jì)算智能技術(shù)的實(shí)現(xiàn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年1月八省聯(lián)考河南新高考物理試卷真題(含答案詳解)
- 物業(yè)管理服務(wù)人員配備及崗位職責(zé)
- 建設(shè)工程檢試驗(yàn)工作管理實(shí)施指引
- 鄭州2024年河南鄭州市惠濟(jì)區(qū)事業(yè)單位80人筆試歷年參考題庫(kù)頻考點(diǎn)試題附帶答案詳解
- 深靜脈血栓的手術(shù)預(yù)防
- 【9道期末】安徽省合肥市廬陽(yáng)區(qū)2023-2024學(xué)年九年級(jí)上學(xué)期期末道德與法治試題
- 軟件租賃合同范例
- 腹腔鏡全胃切除手術(shù)配合
- 2024-2030年中國(guó)非物質(zhì)文化遺產(chǎn)市場(chǎng)前景調(diào)研及投資風(fēng)險(xiǎn)分析報(bào)告
- 匯川技術(shù)在線測(cè)評(píng)題及答案
- 酒店員工人事制度培訓(xùn)
評(píng)論
0/150
提交評(píng)論