![2021-2022學(xué)年云南省昆明市呈貢區(qū)重點達標名校中考三模數(shù)學(xué)試題含解析_第1頁](http://file4.renrendoc.com/view/b86335be1344c09735980e7a31176588/b86335be1344c09735980e7a311765881.gif)
![2021-2022學(xué)年云南省昆明市呈貢區(qū)重點達標名校中考三模數(shù)學(xué)試題含解析_第2頁](http://file4.renrendoc.com/view/b86335be1344c09735980e7a31176588/b86335be1344c09735980e7a311765882.gif)
![2021-2022學(xué)年云南省昆明市呈貢區(qū)重點達標名校中考三模數(shù)學(xué)試題含解析_第3頁](http://file4.renrendoc.com/view/b86335be1344c09735980e7a31176588/b86335be1344c09735980e7a311765883.gif)
![2021-2022學(xué)年云南省昆明市呈貢區(qū)重點達標名校中考三模數(shù)學(xué)試題含解析_第4頁](http://file4.renrendoc.com/view/b86335be1344c09735980e7a31176588/b86335be1344c09735980e7a311765884.gif)
![2021-2022學(xué)年云南省昆明市呈貢區(qū)重點達標名校中考三模數(shù)學(xué)試題含解析_第5頁](http://file4.renrendoc.com/view/b86335be1344c09735980e7a31176588/b86335be1344c09735980e7a311765885.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2021-2022中考數(shù)學(xué)模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,線段AB兩個端點的坐標分別為A(4,4),B(6,2),以原點O為位似中心,在第一象限內(nèi)將線段AB縮小為原來的后得到線段CD,則端點C和D的坐標分別為()A.(2,2),(3,2) B.(2,4),(3,1)C.(2,2),(3,1) D.(3,1),(2,2)2.下列計算正確的是()A.()2=±8 B.+=6 C.(﹣)0=0 D.(x﹣2y)﹣3=3.下列判斷錯誤的是()A.對角線相等的四邊形是矩形B.對角線相互垂直平分的四邊形是菱形C.對角線相互垂直且相等的平行四邊形是正方形D.對角線相互平分的四邊形是平行四邊形4.去年某市7月1日到7日的每一天最高氣溫變化如折線圖所示,則關(guān)于這組數(shù)據(jù)的描述正確的是()A.最低溫度是32℃ B.眾數(shù)是35℃ C.中位數(shù)是34℃ D.平均數(shù)是33℃5.下面的統(tǒng)計圖反映了我市2011﹣2016年氣溫變化情況,下列說法不合理的是()A.2011﹣2014年最高溫度呈上升趨勢B.2014年出現(xiàn)了這6年的最高溫度C.2011﹣2015年的溫差成下降趨勢D.2016年的溫差最大6.如圖所示,從☉O外一點A引圓的切線AB,切點為B,連接AO并延長交圓于點C,連接BC,已知∠A=26°,則∠ACB的度數(shù)為()A.32° B.30° C.26° D.13°7.如圖,AC是⊙O的直徑,弦BD⊥AO于E,連接BC,過點O作OF⊥BC于F,若BD=8cm,AE=2cm,則OF的長度是()A.3cm B.cm C.2.5cm D.cm8.如圖,是在直角坐標系中圍棋子擺出的圖案,若再擺放一黑一白兩枚棋子,使9枚棋子組成的圖案既是軸對稱圖形又是中心對稱圖形,則這兩枚棋子的坐標是()A.黑(3,3),白(3,1) B.黑(3,1),白(3,3)C.黑(1,5),白(5,5) D.黑(3,2),白(3,3)9.如圖,已知Rt△ABC中,∠BAC=90°,將△ABC繞點A順時針旋轉(zhuǎn),使點D落在射線CA上,DE的延長線交BC于F,則∠CFD的度數(shù)為()A.80° B.90° C.100° D.120°10.計算﹣1﹣(﹣4)的結(jié)果為()A.﹣3 B.3 C.﹣5 D.5二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,將直尺與含30°角的三角尺擺放在一起,若∠1=20°,則∠2的度數(shù)是___.12.股市規(guī)定:股票每天的漲、跌幅均不超過10%,即當漲了原價的10%后,便不能再漲,叫做漲停;當?shù)嗽瓋r的10%后,便不能再跌,叫做跌停.若一支股票某天跌停,之后兩天時間又漲回到原價,若這兩天此股票股價的平均增長率為x,則x滿足的方程是_____.13.觀察下列等式:第1個等式:a1=;第2個等式:a2=;第3個等式:a3=;…請按以上規(guī)律解答下列問題:(1)列出第5個等式:a5=_____;(2)求a1+a2+a3+…+an=,那么n的值為_____.14.已知且,則=__________.15.在一個不透明的袋子中裝有除顏色外其他均相同的3個紅球和2個白球,從中任意摸出一個球,則摸出白球的概率是_____.16.2018年春節(jié)期間,反季游成為出境游的熱門,中國游客青睞的目的地仍主要集中在溫暖的東南亞地區(qū).據(jù)調(diào)查發(fā)現(xiàn)2018年春節(jié)期間出境游約有700萬人,游客目的地分布情況的扇形圖如圖所示,從中可知出境游東南亞地區(qū)的游客約有________萬人.三、解答題(共8題,共72分)17.(8分)(1)化簡:(2)解不等式組.18.(8分)如圖1,已知△ABC是等腰直角三角形,∠BAC=90°,點D是BC的中點.作正方形DEFG,使點A、C分別在DG和DE上,連接AE,BG.試猜想線段BG和AE的數(shù)量關(guān)系是_____;將正方形DEFG繞點D逆時針方向旋轉(zhuǎn)α(0°<α≤360°),①判斷(1)中的結(jié)論是否仍然成立?請利用圖2證明你的結(jié)論;②若BC=DE=4,當AE取最大值時,求AF的值.19.(8分)如圖所示,A、B兩地之間有一條河,原來從A地到B地需要經(jīng)過橋DC,沿折線A→D→C→B到達,現(xiàn)在新建了橋EF(EF=DC),可直接沿直線AB從A地到達B地,已知BC=12km,∠A=45°,∠B=30°,橋DC和AB平行.(1)求橋DC與直線AB的距離;(2)現(xiàn)在從A地到達B地可比原來少走多少路程?(以上兩問中的結(jié)果均精確到0.1km,參考數(shù)據(jù):≈1.14,≈1.73)20.(8分)如圖,已知△ABC.(1)請用直尺和圓規(guī)作出∠A的平分線AD(不要求寫作法,但要保留作圖痕跡);(2)在(1)的條件下,若AB=AC,∠B=70°,求∠BAD的度數(shù).21.(8分)為了傳承中華優(yōu)秀傳統(tǒng)文化,市教育局決定開展“經(jīng)典誦讀進校園”活動,某校團委組織八年級100名學(xué)生進行“經(jīng)典誦讀”選拔賽,賽后對全體參賽學(xué)生的成績進行整理,得到下列不完整的統(tǒng)計圖表.組別分數(shù)段頻次頻率A60≤x<70170.17B
70≤x<80
30
aC
80≤x<90
b
0.45D
90≤x<100
8
0.08請根據(jù)所給信息,解答以下問題:表中a=______,b=______;請計算扇形統(tǒng)計圖中B組對應(yīng)扇形的圓心角的度數(shù);已知有四名同學(xué)均取得98分的最好成績,其中包括來自同一班級的甲、乙兩名同學(xué),學(xué)校將從這四名同學(xué)中隨機選出兩名參加市級比賽,請用列表法或畫樹狀圖法求甲、乙兩名同學(xué)都被選中的概率.22.(10分)如圖,頂點為C的拋物線y=ax2+bx(a>0)經(jīng)過點A和x軸正半軸上的點B,連接OC、OA、AB,已知OA=OB=2,∠AOB=120°.(1)求這條拋物線的表達式;(2)過點C作CE⊥OB,垂足為E,點P為y軸上的動點,若以O(shè)、C、P為頂點的三角形與△AOE相似,求點P的坐標;(3)若將(2)的線段OE繞點O逆時針旋轉(zhuǎn)得到OE′,旋轉(zhuǎn)角為α(0°<α<120°),連接E′A、E′B,求E′A+E′B的最小值.23.(12分)鄂州市化工材料經(jīng)銷公司購進一種化工原料若干千克,價格為每千克30元.物價部門規(guī)定其銷售單價不高于每千克60元,不低于每千克30元.經(jīng)市場調(diào)查發(fā)現(xiàn):日銷售量y(千克)是銷售單價x(元)的一次函數(shù),且當x=60時,y=80;x=50時,y=1.在銷售過程中,每天還要支付其他費用450元.求出y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.求該公司銷售該原料日獲利w(元)與銷售單價x(元)之間的函數(shù)關(guān)系式.當銷售單價為多少元時,該公司日獲利最大?最大獲利是多少元?24.為鼓勵大學(xué)畢業(yè)生自主創(chuàng)業(yè),某市政府出臺了相關(guān)政策:由政府協(xié)調(diào),本市企業(yè)按成本價提供產(chǎn)品給大學(xué)畢業(yè)生自主銷售,成本價與出廠價之間的差價由政府承擔.李明按照相關(guān)政策投資銷售本市生產(chǎn)的一種新型節(jié)能燈.已知這種節(jié)能燈的成本價為每件元,出廠價為每件元,每月銷售量(件)與銷售單價(元)之間的關(guān)系近似滿足一次函數(shù):.李明在開始創(chuàng)業(yè)的第一個月將銷售單價定為元,那么政府這個月為他承擔的總差價為多少元?設(shè)李明獲得的利潤為(元),當銷售單價定為多少元時,每月可獲得最大利潤?物價部門規(guī)定,這種節(jié)能燈的銷售單價不得高于元.如果李明想要每月獲得的利潤不低于元,那么政府為他承擔的總差價最少為多少元?
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
直接利用位似圖形的性質(zhì)得出對應(yīng)點坐標乘以得出即可.【詳解】解:∵線段AB兩個端點的坐標分別為A(4,4),B(6,2),以原點O為位似中心,在第一象限內(nèi)將線段AB縮小為原來的后得到線段CD,∴端點的坐標為:(2,2),(3,1).故選C.【點睛】本題考查位似變換;坐標與圖形性質(zhì),數(shù)形結(jié)合思想解題是本題的解題關(guān)鍵.2、D【解析】
各項中每項計算得到結(jié)果,即可作出判斷.【詳解】解:A.原式=8,錯誤;B.原式=2+4,錯誤;C.原式=1,錯誤;D.原式=x6y﹣3=,正確.故選D.【點睛】此題考查了實數(shù)的運算,熟練掌握運算法則是解本題的關(guān)鍵.3、A【解析】
利用菱形的判定定理、矩形的判定定理、平行四邊形的判定定理、正方形的判定定理分別對每個選項進行判斷后即可確定正確的選項.【詳解】解:、對角線相等的四邊形是矩形,錯誤;、對角線相互垂直平分的四邊形是菱形,正確;、對角線相互垂直且相等的平行四邊形是正方形,正確;、對角線相互平分的四邊形是平行四邊形,正確;故選:.【點睛】本題考查了命題與定理的知識,解題的關(guān)鍵是能夠了解矩形和菱形的判定定理,難度不大.4、D【解析】分析:將數(shù)據(jù)從小到大排列,由中位數(shù)及眾數(shù)、平均數(shù)的定義,可得出答案.詳解:由折線統(tǒng)計圖知這7天的氣溫從低到高排列為:31、32、33、33、33、34、35,所以最低氣溫為31℃,眾數(shù)為33℃,中位數(shù)為33℃,平均數(shù)是=33℃.故選D.點睛:本題考查了眾數(shù)、中位數(shù)的知識,解答本題的關(guān)鍵是由折線統(tǒng)計圖得到最高氣溫的7個數(shù)據(jù).5、C【解析】
利用折線統(tǒng)計圖結(jié)合相應(yīng)數(shù)據(jù),分別分析得出符合題意的答案.【詳解】A選項:年最高溫度呈上升趨勢,正確;
B選項:2014年出現(xiàn)了這6年的最高溫度,正確;
C選項:年的溫差成下降趨勢,錯誤;
D選項:2016年的溫差最大,正確;
故選C.【點睛】考查了折線統(tǒng)計圖,利用折線統(tǒng)計圖獲取正確信息是解題關(guān)鍵.6、A【解析】
連接OB,根據(jù)切線的性質(zhì)和直角三角形的兩銳角互余求得∠AOB=64°,再由等腰三角形的性質(zhì)可得∠C=∠OBC,根據(jù)三角形外角的性質(zhì)即可求得∠ACB的度數(shù).【詳解】連接OB,∵AB與☉O相切于點B,∴∠OBA=90°,∵∠A=26°,∴∠AOB=90°-26°=64°,∵OB=OC,∴∠C=∠OBC,∴∠AOB=∠C+∠OBC=2∠C,∴∠C=32°.故選A.【點睛】本題考查了切線的性質(zhì),利用切線的性質(zhì),結(jié)合三角形外角的性質(zhì)求出角的度數(shù)是解決本題的關(guān)鍵.7、D【解析】分析:根據(jù)垂徑定理得出OE的長,進而利用勾股定理得出BC的長,再利用相似三角形的判定和性質(zhì)解答即可.詳解:連接OB,∵AC是⊙O的直徑,弦BD⊥AO于E,BD=1cm,AE=2cm.在Rt△OEB中,OE2+BE2=OB2,即OE2+42=(OE+2)2解得:OE=3,∴OB=3+2=5,∴EC=5+3=1.在Rt△EBC中,BC=.∵OF⊥BC,∴∠OFC=∠CEB=90°.∵∠C=∠C,∴△OFC∽△BEC,∴,即,解得:OF=.故選D.點睛:本題考查了垂徑定理,關(guān)鍵是根據(jù)垂徑定理得出OE的長.8、A【解析】
首先根據(jù)各選項棋子的位置,進而結(jié)合軸對稱圖形和中心對稱圖形的性質(zhì)判斷得出即可.【詳解】解:A、當擺放黑(3,3),白(3,1)時,此時是軸對稱圖形,也是中心對稱圖形,故此選項正確;B、當擺放黑(3,1),白(3,3)時,此時是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;C、當擺放黑(1,5),白(5,5)時,此時不是軸對稱圖形也不是中心對稱圖形,故此選項錯誤;D、當擺放黑(3,2),白(3,3)時,此時是軸對稱圖形不是中心對稱圖形,故此選項錯誤.故選:A.【點睛】此題主要考查了坐標確定位置以及軸對稱圖形與中心對稱圖形的性質(zhì),利用已知確定各點位置是解題關(guān)鍵.9、B【解析】
根據(jù)旋轉(zhuǎn)的性質(zhì)得出全等,推出∠B=∠D,求出∠B+∠BEF=∠D+∠AED=90°,根據(jù)三角形外角性質(zhì)得出∠CFD=∠B+∠BEF,代入求出即可.【詳解】解:∵將△ABC繞點A順時針旋轉(zhuǎn)得到△ADE,∴△ABC≌△ADE,∴∠B=∠D,∵∠CAB=∠BAD=90°,∠BEF=∠AED,∠B+∠BEF+∠BFE=180°,∠D+∠BAD+∠AED=180°,∴∠B+∠BEF=∠D+∠AED=180°﹣90°=90°,∴∠CFD=∠B+∠BEF=90°,故選:B.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),全等三角形的性質(zhì)和判定,三角形內(nèi)角和定理,三角形外角性質(zhì)的應(yīng)用,掌握旋轉(zhuǎn)變換的性質(zhì)是解題的關(guān)鍵.10、B【解析】
原式利用減法法則變形,計算即可求出值.【詳解】,故選:B.【點睛】本題主要考查了有理數(shù)的加減,熟練掌握有理數(shù)加減的運算法則是解決本題的關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、50°【解析】
先根據(jù)三角形外角的性質(zhì)求出∠BEF的度數(shù),再根據(jù)平行線的性質(zhì)得到∠2的度數(shù).【詳解】如圖所示:
∵∠BEF是△AEF的外角,∠1=20°,∠F=30°,
∴∠BEF=∠1+∠F=50°,
∵AB∥CD,
∴∠2=∠BEF=50°,
故答案是:50°.【點睛】考查了平行線的性質(zhì),解題的關(guān)鍵是掌握、運用三角形外角的性質(zhì)(三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和).12、.【解析】
股票一次跌停就跌到原來價格的90%,再從90%的基礎(chǔ)上漲到原來的價格,且漲幅只能≤10%,設(shè)這兩天此股票股價的平均增長率為x,每天相對于前一天就上漲到1+x,由此列出方程解答即可.【詳解】設(shè)這兩天此股票股價的平均增長率為x,由題意得(1﹣10%)(1+x)2=1.故答案為:(1﹣10%)(1+x)2=1.【點睛】本題主要考查了由實際問題抽象出一元二次方程,關(guān)鍵是掌握平均變化率的方法,若設(shè)變化前的量為,變化后的量為,平均變化率為,則經(jīng)過兩次變化后的數(shù)量關(guān)系為13、49【解析】
(1)觀察等式可得然后根據(jù)此規(guī)律就可解決問題;
(2)只需運用以上規(guī)律,采用拆項相消法即可解決問題.【詳解】(1)觀察等式,可得以下規(guī)律:,∴(2)解得:n=49.故答案為:49.【點睛】屬于規(guī)律型:數(shù)字的變化類,觀察題目,找出題目中數(shù)字的變化規(guī)律是解題的關(guān)鍵.14、【解析】分析:根據(jù)相似三角形的面積比等于相似比的平方求解即可.詳解:∵△ABC∽△A′B′C′,∴S△ABC:S△A′B′C′=AB2:A′B′2=1:2,∴AB:A′B′=1:.點睛:本題的關(guān)鍵是理解相似三角形的面積比等于相似比的平方.15、【解析】
根據(jù)隨機事件概率大小的求法,找準兩點:①符合條件的情況數(shù)目;②全部情況的總數(shù).二者的比值就是其發(fā)生的概率的大?。驹斀狻拷猓骸咴谝粋€不透明的袋子中裝有除顏色外其他均相同的3個紅球和2個白球,∴從中任意摸出一個球,則摸出白球的概率是.故答案為:.【點睛】本題考查概率的求法與運用,一般方法為:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=16、1【解析】分析:用總?cè)藬?shù)乘以樣本中出境游東南亞地區(qū)的百分比即可得.詳解:出境游東南亞地區(qū)的游客約有700×(1﹣16%﹣15%﹣11%﹣13%)=700×45%=1(萬).故答案為1.點睛:本題主要考查扇形統(tǒng)計圖與樣本估計總體,解題的關(guān)鍵是掌握各項目的百分比之和為1,利用樣本估計總體思想的運用.三、解答題(共8題,共72分)17、(1);(2)﹣2<x<1【解析】
(1)原式括號中兩項通分并利用同分母分式的減法法則計算,同時利用除法法則變形,約分即可得到結(jié)果;(2)分別求出不等式組中兩不等式的解集,找出解集的公共部分即可.【詳解】(1)原式=;(2)不等式組整理得:,則不等式組的解集為﹣2<x<1.【點睛】此題考查計算能力,(1)考查分式的化簡,正確將分子與分母分解因式及按照正確運算順序進行計算是解題的關(guān)鍵;(2)是解不等式組,注意系數(shù)化為1時乘或除以的是負數(shù)時要變號.18、(1)BG=AE.(2)①成立BG=AE.證明見解析.②AF=.【解析】
(1)由等腰直角三角形的性質(zhì)及正方形的性質(zhì)就可以得出△ADE≌△BDG就可以得出結(jié)論;
(2)①如圖2,連接AD,由等腰直角三角形的性質(zhì)及正方形的性質(zhì)就可以得出△ADE≌△BDG就可以得出結(jié)論;
②由①可知BG=AE,當BG取得最大值時,AE取得最大值,由勾股定理就可以得出結(jié)論.【詳解】(1)BG=AE.理由:如圖1,∵△ABC是等腰直角三角形,∠BAC=90°,點D是BC的中點,∴AD⊥BC,BD=CD,∴∠ADB=∠ADC=90°.∵四邊形DEFG是正方形,∴DE=DG.在△BDG和△ADE中,BD=AD,∠BDG=∠ADE,GD=ED,∴△ADE≌△BDG(SAS),∴BG=AE.故答案為BG=AE;(2)①成立BG=AE.理由:如圖2,連接AD,∵在Rt△BAC中,D為斜邊BC中點,∴AD=BD,AD⊥BC,∴∠ADG+∠GDB=90°.
∵四邊形EFGD為正方形,∴DE=DG,且∠GDE=90°,∴∠ADG+∠ADE=90°,∴∠BDG=∠ADE.在△BDG和△ADE中,BD=AD,∠BDG=∠ADE,GD=ED,∴△BDG≌△ADE(SAS),∴BG=AE;
②∵BG=AE,∴當BG取得最大值時,AE取得最大值.如圖3,當旋轉(zhuǎn)角為270°時,BG=AE.∵BC=DE=4,∴BG=2+4=6.∴AE=6.在Rt△AEF中,由勾股定理,得AF==,∴AF=2.【點睛】本題考查的知識點是全等三角形的判定與性質(zhì)及勾股定理及正方形的性質(zhì)和等腰直角三角形,解題的關(guān)鍵是熟練的掌握全等三角形的判定與性質(zhì)及勾股定理以及正方形的性質(zhì)和等腰直角三角形.19、(1)橋DC與直線AB的距離是6.0km;(2)現(xiàn)在從A地到達B地可比原來少走的路程是4.1km.【解析】
(1)過C向AB作垂線構(gòu)建三角形,求出垂線段的長度即可;(2)過點D向AB作垂線,然后根據(jù)解三角形求出AD,CB的長,進而求出現(xiàn)在從A地到達B地可比原來少走的路程.【詳解】解:(1)作CH⊥AB于點H,如圖所示,∵BC=12km,∠B=30°,∴km,BH=km,即橋DC與直線AB的距離是6.0km;(2)作DM⊥AB于點M,如圖所示,∵橋DC和AB平行,CH=6km,∴DM=CH=6km,∵∠DMA=90°,∠B=45°,MH=EF=DC,∴AD=km,AM=DM=6km,∴現(xiàn)在從A地到達B地可比原來少走的路程是:(AD+DC+BC)﹣(AM+MH+BH)=AD+DC+BC﹣AM﹣MH﹣BH=AD+BC﹣AM﹣BH=km,即現(xiàn)在從A地到達B地可比原來少走的路程是4.1km.【點睛】做輔助線,構(gòu)建直角三角形,根據(jù)邊角關(guān)系解三角形,是解答本題的關(guān)鍵.20、(1)見解析;(2)20°;【解析】
(1)尺規(guī)作一個角的平分線是基本尺規(guī)作圖,根據(jù)作圖步驟即可畫圖;(2)運用等腰三角形的性質(zhì)再根據(jù)角平分線的定義計算出∠BAD的度數(shù)即可.【詳解】(1)如圖,AD為所求;(2)∵AB=AC,AD平分∠BAC,∴AD⊥BC,∴∠BDA=90°,∴∠BAD=90°﹣∠B=90°﹣70°=20°.【點睛】考查角平分線的作法以及等腰三角形的性質(zhì),掌握角平分線的作法是解題的關(guān)鍵.21、(1)0.3,45;(2)108°;(3).【解析】
(1)首先根據(jù)A組頻數(shù)及其頻率可得總?cè)藬?shù),再利用頻數(shù)、頻率之間的關(guān)系求得a、b;(2)B組的頻率乘以360°即可求得答案;(2)畫樹形圖后即可將所有情況全部列舉出來,從而求得恰好抽中者兩人的概率;【詳解】(1)本次調(diào)查的總?cè)藬?shù)為17÷0.17=100(人),則a==0.3,b=100×0.45=45(人).故答案為0.3,45;(2)360°×0.3=108°.答:扇形統(tǒng)計圖中B組對應(yīng)扇形的圓心角為108°.(3)將同一班級的甲、乙學(xué)生記為A、B,另外兩學(xué)生記為C、D,畫樹形圖得:∵共有12種等可能的情況,甲、乙兩名同學(xué)都被選中的情況有2種,∴甲、乙兩名同學(xué)都被選中的概率為=.【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大小.22、(1)y=x2﹣x;(2)點P坐標為(0,)或(0,);(3).【解析】
(1)根據(jù)AO=OB=2,∠AOB=120°,求出A點坐標,以及B點坐標,進而利用待定系數(shù)法求二次函數(shù)解析式;(2)∠EOC=30°,由OA=2OE,OC=,推出當OP=OC或OP′=2OC時,△POC與△AOE相似;(3)如圖,取Q(,0).連接AQ,QE′.由△OE′Q∽△OBE′,推出,推出E′Q=BE′,推出AE′+BE′=AE′+QE′,由AE′+E′Q≥AQ,推出E′A+E′B的最小值就是線段AQ的長.【詳解】(1)過點A作AH⊥x軸于點H,∵AO=OB=2,∠AOB=120°,∴∠AOH=60°,∴OH=1,AH=,∴A點坐標為:(-1,),B點坐標為:(2,0),將兩點代入y=ax2+bx得:,解得:,∴拋物線的表達式為:y=x2-x;(2)如圖,∵C(1,-),∴tan∠EOC=,∴∠EOC=30°,∴∠POC=90°+30°=120°,∵∠AOE=120°,∴∠AOE=∠POC=120°,∵OA=2OE,OC=,∴當OP=OC或OP′=2OC時,△POC與△AOE相似,∴OP=,OP′=,∴點P坐標為(0,)或(0,).(3)如圖,取Q(,0).連接AQ,QE′.∵,∠QOE′=∠BOE′,∴△OE′Q∽△OBE′,∴,∴E′Q=BE′,∴AE′+BE′=AE′+QE′,∵AE′+E′Q≥AQ,∴E′A+E′B的最小值就是線段AQ的長,最小值為.【點睛】本題考查二次函數(shù)綜合題、解直角三角形、相似三角形的判定和性質(zhì)、兩點之間線段最短等知識,解題的關(guān)鍵是學(xué)會由分類討論的思想思考問題,學(xué)會構(gòu)造相似三角形解決最短問題,屬于中考壓軸題.23、(1)y=-2x+200
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 現(xiàn)代辦公環(huán)境下的智能物流設(shè)備與技術(shù)
- 現(xiàn)代廣告中價值觀的傳遞機制研究
- 2025年度環(huán)保設(shè)備鋼材買賣居間代理服務(wù)標準合同范本
- 2025年度城市更新改造項目投資合同-@-2
- 環(huán)保理念引領(lǐng)未來綠色能源產(chǎn)業(yè)發(fā)展解析
- 現(xiàn)代辦公環(huán)境中實驗技術(shù)的新挑戰(zhàn)與新機遇
- 構(gòu)建智能出行未來電車應(yīng)急處理課程概述
- 物聯(lián)網(wǎng)在醫(yī)療設(shè)施應(yīng)急管理中的應(yīng)用研究
- 現(xiàn)代辦公軟件在商業(yè)活動中的價值挖掘
- 環(huán)境保護與企業(yè)社會責(zé)任的深度融合
- 初二上冊好的數(shù)學(xué)試卷
- 保潔服務(wù)質(zhì)量與服務(wù)意識的培訓(xùn)
- 廣東省潮州市2024-2025學(xué)年九年級上學(xué)期期末道德與法治試卷(含答案)
- 突發(fā)公共衛(wèi)生事件衛(wèi)生應(yīng)急
- 部編版2024-2025學(xué)年三年級上冊語文期末測試卷(含答案)
- 《景觀設(shè)計》課件
- 門窗安裝施工安全管理方案
- 2024年安徽省高校分類對口招生考試數(shù)學(xué)試卷真題
- ISO45001管理體系培訓(xùn)課件
- 動畫課件教學(xué)教學(xué)課件
- 會所股東合作協(xié)議書范文范本
評論
0/150
提交評論