版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2021-2022中考數(shù)學(xué)模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.在函數(shù)y=中,自變量x的取值范圍是()A.x≥0 B.x≤0 C.x=0 D.任意實數(shù)2.對于一組統(tǒng)計數(shù)據(jù):1,6,2,3,3,下列說法錯誤的是()A.平均數(shù)是3 B.中位數(shù)是3 C.眾數(shù)是3 D.方差是2.53.如圖,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以點C為圓心,CB長為半徑作弧,交AB于點D;再分別以點B和點D為圓心,大于BD的長為半徑作弧,兩弧相交于點E,作射線CE交AB于點F,則AF的長為()A.5 B.6 C.7 D.84.下列是我國四座城市的地鐵標(biāo)志圖,其中是中心對稱圖形的是()A. B. C. D.5.如圖,這是一個幾何體的三視圖,根據(jù)圖中所示數(shù)據(jù)計算這個幾何體的側(cè)面積為()A.9π B.10π C.11π D.12π6.一次函數(shù)y=ax+b與反比例函數(shù)y=在同一平面直角坐標(biāo)系中的圖象如左圖所示,則二次函數(shù)y=ax2+bx+c的圖象可能是()A. B. C. D.7.若順次連接四邊形各邊中點所得的四邊形是菱形,則四邊形一定是()A.矩形 B.菱形C.對角線互相垂直的四邊形 D.對角線相等的四邊形8.若x是2的相反數(shù),|y|=3,則的值是()A.﹣2 B.4 C.2或﹣4 D.﹣2或49.如圖,?ABCD的對角線AC、BD相交于點O,且AC+BD=16,CD=6,則△ABO的周長是()A.10 B.14 C.20 D.2210.如圖,A、B、C是⊙O上的三點,∠B=75°,則∠AOC的度數(shù)是()A.150° B.140° C.130° D.120°二、填空題(本大題共6個小題,每小題3分,共18分)11.已知兩圓內(nèi)切,半徑分別為2厘米和5厘米,那么這兩圓的圓心距等于_____厘米.12.函數(shù)y=1x-1的自變量x的取值范圍是13.ABCD為矩形的四個頂點,AB=16cm,AD=6cm,動點P、Q分別從點A、C同時出發(fā),點P以3cm/s的速度向點B移動,一直到達B為止,點Q以2cm/s的速度向D移動,P、Q兩點從出發(fā)開始到__________秒時,點P和點Q的距離是10cm.14.如圖,在扇形OAB中,∠O=60°,OA=4,四邊形OECF是扇形OAB中最大的菱形,其中點E,C,F(xiàn)分別在OA,,OB上,則圖中陰影部分的面積為__________.15.如果拋物線y=(k﹣2)x2+k的開口向上,那么k的取值范圍是_____.16.如圖所示,把一張長方形紙片沿折疊后,點分別落在點的位置.若,則等于________.三、解答題(共8題,共72分)17.(8分)A,B兩地相距20km.甲、乙兩人都由A地去B地,甲騎自行車,平均速度為10km/h;乙乘汽車,平均速度為40km/h,且比甲晚1.5h出發(fā).設(shè)甲的騎行時間為x(h)(0≤x≤2)(1)根據(jù)題意,填寫下表:時間x(h)與A地的距離0.51.8_____甲與A地的距離(km)520乙與A地的距離(km)012(2)設(shè)甲,乙兩人與A地的距離為y1(km)和y2(km),寫出y1,y2關(guān)于x的函數(shù)解析式;(3)設(shè)甲,乙兩人之間的距離為y,當(dāng)y=12時,求x的值.18.(8分)如圖,在⊙O中,AB為直徑,OC⊥AB,弦CD與OB交于點F,在AB的延長線上有點E,且EF=ED.(1)求證:DE是⊙O的切線;(2)若tanA=,探究線段AB和BE之間的數(shù)量關(guān)系,并證明;(3)在(2)的條件下,若OF=1,求圓O的半徑.19.(8分)“食品安全”受到全社會的廣泛關(guān)注,我區(qū)兼善中學(xué)對部分學(xué)生就食品安全知識的了解程度,采用隨機抽樣調(diào)查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了下面的兩幅尚不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:(1)接受問卷調(diào)查的學(xué)生共有人,扇形統(tǒng)計圖中“基本了解”部分所對應(yīng)扇形的圓心角為°;(2)請補全條形統(tǒng)計圖;(3)若對食品安全知識達到“了解”程度的學(xué)生中,男、女生的比例恰為2:3,現(xiàn)從中隨機抽取2人參加食品安全知識競賽,請用樹狀圖或列表法求出恰好抽到1個男生和1個女生的概率.20.(8分)為了了解學(xué)生關(guān)注熱點新聞的情況,“兩會”期間,小明對班級同學(xué)一周內(nèi)收看“兩會”新聞的次數(shù)情況作了調(diào)查,調(diào)查結(jié)果統(tǒng)計如圖所示(其中男生收看次的人數(shù)沒有標(biāo)出).根據(jù)上述信息,解答下列各題:×(1)該班級女生人數(shù)是__________,女生收看“兩會”新聞次數(shù)的中位數(shù)是________;(2)對于某個群體,我們把一周內(nèi)收看某熱點新聞次數(shù)不低于次的人數(shù)占其所在群體總?cè)藬?shù)的百分比叫做該群體對某熱點新聞的“關(guān)注指數(shù)”.如果該班級男生對“兩會”新聞的“關(guān)注指數(shù)”比女生低,試求該班級男生人數(shù);(3)為進一步分析該班級男、女生收看“兩會”新聞次數(shù)的特點,小明給出了男生的部分統(tǒng)計量(如表).統(tǒng)計量平均數(shù)(次)中位數(shù)(次)眾數(shù)(次)方差…該班級男生…根據(jù)你所學(xué)過的統(tǒng)計知識,適當(dāng)計算女生的有關(guān)統(tǒng)計量,進而比較該班級男、女生收看“兩會”新聞次數(shù)的波動大小.21.(8分)如圖,在△ABC中,AB=AC=4,∠A=36°.在AC邊上確定點D,使得△ABD與△BCD都是等腰三角形,并求BC的長(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)22.(10分)鐵嶺市某商貿(mào)公司以每千克40元的價格購進一種干果,計劃以每千克60元的價格銷售,為了讓顧客得到更大的實惠,現(xiàn)決定降價銷售,已知這種干果銷售量y(千克)與每千克降價x(元)(0<x<20)之間滿足一次函數(shù)關(guān)系,其圖象如圖所示:求y與x之間的函數(shù)關(guān)系式;商貿(mào)公司要想獲利2090元,則這種干果每千克應(yīng)降價多少元?該干果每千克降價多少元時,商貿(mào)公司獲利最大?最大利潤是多少元?23.(12分)關(guān)于x的一元二次方程x2+2x+2m=0有兩個不相等的實數(shù)根.(1)求m的取值范圍;(2)若x1,x2是一元二次方程x2+2x+2m=0的兩個根,且x12+x22﹣x1x2=8,求m的值.24.已知,關(guān)于x的方程x2﹣mx+m2﹣1=0,(1)不解方程,判斷此方程根的情況;(2)若x=2是該方程的一個根,求m的值.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
當(dāng)函數(shù)表達式是二次根式時,被開方數(shù)為非負數(shù).據(jù)此可得.【詳解】解:根據(jù)題意知,
解得:x=0,
故選:C.【點睛】本題主要考查函數(shù)自變量的取值范圍,函數(shù)自變量的范圍一般從三個方面考慮:(1)當(dāng)函數(shù)表達式是整式時,自變量可取全體實數(shù);(2)當(dāng)函數(shù)表達式是分式時,考慮分式的分母不能為0;(3)當(dāng)函數(shù)表達式是二次根式時,被開方數(shù)為非負數(shù).2、D【解析】
根據(jù)平均數(shù)、中位數(shù)、眾數(shù)和方差的定義逐一求解可得.【詳解】解:A、平均數(shù)為1+6+2+3+35B、重新排列為1、2、3、3、6,則中位數(shù)為3,正確;C、眾數(shù)為3,正確;D、方差為15×[(1-3)2+(6-3)2+(2-3)2+(3-3)2+(3-3)2故選:D.【點睛】本題考查了眾數(shù)、平均數(shù)、中位數(shù)、方差.平均數(shù)平均數(shù)表示一組數(shù)據(jù)的平均程度.中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻?,最中間的那個數(shù)(或最中間兩個數(shù)的平均數(shù));方差是用來衡量一組數(shù)據(jù)波動大小的量.3、B【解析】試題分析:連接CD,∵在△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=1.∵作法可知BC=CD=4,CE是線段BD的垂直平分線,∴CD是斜邊AB的中線,∴BD=AD=4,∴BF=DF=2,∴AF=AD+DF=4+2=2.故選B.考點:作圖—基本作圖;含30度角的直角三角形.4、D【解析】
根據(jù)中心對稱圖形的定義解答即可.【詳解】選項A不是中心對稱圖形;選項B不是中心對稱圖形;選項C不是中心對稱圖形;選項D是中心對稱圖形.故選D.【點睛】本題考查了中心對稱圖形的定義,熟練運用中心對稱圖形的定義是解決問題的關(guān)鍵.5、B【解析】【分析】由三視圖可判斷出幾何體的形狀,進而利用圓錐的側(cè)面積公式求出答案.【詳解】由題意可得此幾何體是圓錐,底面圓的半徑為:2,母線長為:5,故這個幾何體的側(cè)面積為:π×2×5=10π,故選B.【點睛】本題考查了由三視圖判斷幾何體的形狀以及圓錐側(cè)面積求法,正確得出幾何體的形狀是解題關(guān)鍵.6、B【解析】
根據(jù)題中給出的函數(shù)圖像結(jié)合一次函數(shù)性質(zhì)得出a<0,b>0,再由反比例函數(shù)圖像性質(zhì)得出c<0,從而可判斷二次函數(shù)圖像開口向下,對稱軸:>0,即在y軸的右邊,與y軸負半軸相交,從而可得答案.【詳解】解:∵一次函數(shù)y=ax+b圖像過一、二、四,∴a<0,b>0,又∵反比例函數(shù)y=圖像經(jīng)過二、四象限,∴c<0,∴二次函數(shù)對稱軸:>0,∴二次函數(shù)y=ax2+bx+c圖像開口向下,對稱軸在y軸的右邊,與y軸負半軸相交,故答案為B.【點睛】本題考查了二次函數(shù)的圖形,一次函數(shù)的圖象,反比例函數(shù)的圖象,熟練掌握二次函數(shù)的有關(guān)性質(zhì):開口方向、對稱軸、與y軸的交點坐標(biāo)等確定出a、b、c的情況是解題的關(guān)鍵.7、C【解析】【分析】如圖,根據(jù)三角形的中位線定理得到EH∥FG,EH=FG,EF=BD,則可得四邊形EFGH是平行四邊形,若平行四邊形EFGH是菱形,則可有EF=EH,由此即可得到答案.【點睛】如圖,∵E,F(xiàn),G,H分別是邊AD,DC,CB,AB的中點,∴EH=AC,EH∥AC,F(xiàn)G=AC,F(xiàn)G∥AC,EF=BD,∴EH∥FG,EH=FG,∴四邊形EFGH是平行四邊形,假設(shè)AC=BD,∵EH=AC,EF=BD,則EF=EH,∴平行四邊形EFGH是菱形,即只有具備AC=BD即可推出四邊形是菱形,故選D.【點睛】本題考查了中點四邊形,涉及到菱形的判定,三角形的中位線定理,平行四邊形的判定等知識,熟練掌握和靈活運用相關(guān)性質(zhì)進行推理是解此題的關(guān)鍵.8、D【解析】
直接利用相反數(shù)以及絕對值的定義得出x,y的值,進而得出答案.【詳解】解:∵x是1的相反數(shù),|y|=3,∴x=-1,y=±3,∴y-x=4或-1.故選D.【點睛】此題主要考查了有理數(shù)的混合運算,正確得出x,y的值是解題關(guān)鍵.9、B【解析】
直接利用平行四邊形的性質(zhì)得出AO=CO,BO=DO,DC=AB=6,再利用已知求出AO+BO的長,進而得出答案.【詳解】∵四邊形ABCD是平行四邊形,∴AO=CO,BO=DO,DC=AB=6,∵AC+BD=16,∴AO+BO=8,∴△ABO的周長是:1.故選B.【點睛】平行四邊形的性質(zhì)掌握要熟練,找到等值代換即可求解.10、A【解析】
直接根據(jù)圓周角定理即可得出結(jié)論.【詳解】∵A、B、C是⊙O上的三點,∠B=75°,∴∠AOC=2∠B=150°.故選A.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】
由兩圓的半徑分別為2和5,根據(jù)兩圓位置關(guān)系與圓心距d,兩圓半徑R,r的數(shù)量關(guān)系間的聯(lián)系和兩圓位置關(guān)系求得圓心距即可.【詳解】解:∵兩圓的半徑分別為2和5,兩圓內(nèi)切,∴d=R﹣r=5﹣2=1cm,故答案為1.【點睛】此題考查了圓與圓的位置關(guān)系.解題的關(guān)鍵是掌握兩圓位置關(guān)系與圓心距d,兩圓半徑R,r的數(shù)量關(guān)系間的聯(lián)系.12、x>1【解析】依題意可得x-1>0,解得x>1,所以函數(shù)的自變量x的取值范圍是x>113、或【解析】
作PH⊥CD,垂足為H,設(shè)運動時間為t秒,用t表示線段長,用勾股定理列方程求解.【詳解】設(shè)P,Q兩點從出發(fā)經(jīng)過t秒時,點P,Q間的距離是10cm,作PH⊥CD,垂足為H,則PH=AD=6,PQ=10,∵DH=PA=3t,CQ=2t,∴HQ=CD?DH?CQ=|16?5t|,由勾股定理,得解得即P,Q兩點從出發(fā)經(jīng)過1.6或4.8秒時,點P,Q間的距離是10cm.故答案為或.【點睛】考查矩形的性質(zhì),勾股定理,解一元二次方程等,表示出HQ=CD?DH?CQ=|16?5t|是解題的關(guān)鍵.14、8π﹣8【解析】
連接EF、OC交于點H,根據(jù)正切的概念求出FH,根據(jù)菱形的面積公式求出菱形FOEC的面積,根據(jù)扇形面積公式求出扇形OAB的面積,計算即可.【詳解】連接EF、OC交于點H,則OH=2,∴FH=OH×tan30°=2,∴菱形FOEC的面積=×4×4=8,扇形OAB的面積==8π,則陰影部分的面積為8π﹣8,故答案為8π﹣8.【點睛】本題考查了扇形面積的計算、菱形的性質(zhì),熟練掌握扇形的面積公式、菱形的性質(zhì)、靈活運用銳角三角函數(shù)的定義是解題的關(guān)鍵.15、k>2【解析】
根據(jù)二次函數(shù)的性質(zhì)可知,當(dāng)拋物線開口向上時,二次項系數(shù)k﹣2>1.【詳解】因為拋物線y=(k﹣2)x2+k的開口向上,所以k﹣2>1,即k>2,故答案為k>2.【點睛】本題考查二次函數(shù),解題的關(guān)鍵是熟練運用二次函數(shù)的圖象與性質(zhì),本題屬于中等題型.16、50°【解析】
先根據(jù)平行線的性質(zhì)得出∠DEF的度數(shù),再根據(jù)翻折變換的性質(zhì)得出∠D′EF的度數(shù),根據(jù)平角的定義即可得出結(jié)論.【詳解】∵AD∥BC,∠EFB=65°,
∴∠DEF=65°,
又∵∠DEF=∠D′EF,
∴∠D′EF=65°,
∴∠AED′=50°.【點睛】本題考查翻折變換(折疊問題)和平行線的性質(zhì),解題的關(guān)鍵是掌握翻折變換(折疊問題)和平行線的性質(zhì).三、解答題(共8題,共72分)17、(1)18,2,20(2)(3)當(dāng)y=12時,x的值是1.2或1.6【解析】
(Ⅰ)根據(jù)路程、時間、速度三者間的關(guān)系通過計算即可求得相應(yīng)答案;(Ⅱ)根據(jù)路程=速度×?xí)r間結(jié)合甲、乙的速度以及時間范圍即可求得答案;(Ⅲ)根據(jù)題意,得,然后分別將y=12代入即可求得答案.【詳解】(Ⅰ)由題意知:甲、乙二人平均速度分別是平均速度為10km/h和40km/h,且比甲晚1.5h出發(fā),當(dāng)時間x=1.8時,甲離開A的距離是10×1.8=18(km),當(dāng)甲離開A的距離20km時,甲的行駛時間是20÷10=2(時),此時乙行駛的時間是2﹣1.5=0.5(時),所以乙離開A的距離是40×0.5=20(km),故填寫下表:(Ⅱ)由題意知:y1=10x(0≤x≤1.5),y2=;(Ⅲ)根據(jù)題意,得,當(dāng)0≤x≤1.5時,由10x=12,得x=1.2,當(dāng)1.5<x≤2時,由﹣30x+60=12,得x=1.6,因此,當(dāng)y=12時,x的值是1.2或1.6.【點睛】本題考查了一次函數(shù)的應(yīng)用,理清題意,弄清各數(shù)量間的關(guān)系是解題的關(guān)鍵.18、(1)答案見解析;(2)AB=1BE;(1)1.【解析】試題分析:(1)先判斷出∠OCF+∠CFO=90°,再判斷出∠OCF=∠ODF,即可得出結(jié)論;(2)先判斷出∠BDE=∠A,進而得出△EBD∽△EDA,得出AE=2DE,DE=2BE,即可得出結(jié)論;(1)設(shè)BE=x,則DE=EF=2x,AB=1x,半徑OD=x,進而得出OE=1+2x,最后用勾股定理即可得出結(jié)論.試題解析:(1)證明:連結(jié)OD,如圖.∵EF=ED,∴∠EFD=∠EDF.∵∠EFD=∠CFO,∴∠CFO=∠EDF.∵OC⊥OF,∴∠OCF+∠CFO=90°.∵OC=OD,∴∠OCF=∠ODF,∴∠ODC+∠EDF=90°,即∠ODE=90°,∴OD⊥DE.∵點D在⊙O上,∴DE是⊙O的切線;(2)線段AB、BE之間的數(shù)量關(guān)系為:AB=1BE.證明如下:∵AB為⊙O直徑,∴∠ADB=90°,∴∠ADO=∠BDE.∵OA=OD,∴∠ADO=∠A,∴∠BDE=∠A,而∠BED=∠DEA,∴△EBD∽△EDA,∴.∵Rt△ABD中,tanA==,∴=,∴AE=2DE,DE=2BE,∴AE=4BE,∴AB=1BE;(1)設(shè)BE=x,則DE=EF=2x,AB=1x,半徑OD=x.∵OF=1,∴OE=1+2x.在Rt△ODE中,由勾股定理可得:(x)2+(2x)2=(1+2x)2,∴x=﹣(舍)或x=2,∴圓O的半徑為1.點睛:本題是圓的綜合題,主要考查了切線的判定和性質(zhì),等腰三角形的性質(zhì),銳角三角函數(shù),相似三角形的判定和性質(zhì),勾股定理,判斷出△EBD∽△EDA是解答本題的關(guān)鍵.19、(1)60,1°.(2)補圖見解析;(3)【解析】
(1)根據(jù)了解很少的人數(shù)和所占的百分百求出抽查的總?cè)藬?shù),再用“基本了解”所占的百分比乘以360°,即可求出“基本了解”部分所對應(yīng)扇形的圓心角的度數(shù);(2)用調(diào)查的總?cè)藬?shù)減去“基本了解”“了解很少”和“基本了解”的人數(shù),求出了解的人數(shù),從而補全統(tǒng)計圖;(3)根據(jù)題意先畫出樹狀圖,再根據(jù)概率公式即可得出答案.【詳解】(1)接受問卷調(diào)查的學(xué)生共有30÷50%=60(人),扇形統(tǒng)計圖中“基本了解”部分所對應(yīng)扇形的圓心角為360°×=1°,故答案為60,1.(2)了解的人數(shù)有:60﹣15﹣30﹣10=5(人),補圖如下:(3)畫樹狀圖得:?∵共有20種等可能的結(jié)果,恰好抽到1個男生和1個女生的有12種情況,∴恰好抽到1個男生和1個女生的概率為=.【點睛】此題考查了條形統(tǒng)計圖、扇形統(tǒng)計圖以及用列表法或樹狀圖法求概率,讀懂題意,根據(jù)題意求出總?cè)藬?shù)是解題的關(guān)鍵;概率=所求情況數(shù)與總情況數(shù)之比.20、(1)20,1;(2)2人;(1)男生比女生的波動幅度大.【解析】
(1)將柱狀圖中的女生人數(shù)相加即可求得總?cè)藬?shù),中位數(shù)為第10與11名同學(xué)的次數(shù)的平均數(shù).(2)先求出該班女生對“兩會”新聞的“關(guān)注指數(shù)”,即可得出該班男生對“兩會”新聞的“關(guān)注指數(shù)”,再列方程解答即可.(1)比較該班級男、女生收看“兩會”新聞次數(shù)的波動大小,需要求出女生的方差.【詳解】(1)該班級女生人數(shù)是2+5+6+5+2=20,女生收看“兩會”新聞次數(shù)的中位數(shù)是1.故答案為20,1.(2)由題意:該班女生對“兩會”新聞的“關(guān)注指數(shù)”為=65%,所以,男生對“兩會”新聞的“關(guān)注指數(shù)”為60%.設(shè)該班的男生有x人,則=60%,解得:x=2.答:該班級男生有2人.(1)該班級女生收看“兩會”新聞次數(shù)的平均數(shù)為=1,女生收看“兩會”新聞次數(shù)的方差為:=.∵2>,∴男生比女生的波動幅度大.【點睛】本題考查了平均數(shù),中位數(shù),方差的意義.解題的關(guān)鍵是明確平均數(shù)表示一組數(shù)據(jù)的平均程度,中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻?,最中間的那個數(shù)(或最中間兩個數(shù)的平均數(shù));方差是用來衡量一組數(shù)據(jù)波動大小的量.21、【解析】
作BD平分∠ABC交AC于D,則△ABD、△BCD、△ABC均為等腰三角形,依據(jù)相似三角形的性質(zhì)即可得出BC的長.【詳解】如圖所示,作BD平分∠ABC交AC于D,則△ABD、△BCD、△ABC均為等腰三角形,∵∠A=∠CBD=36°,∠C=∠C,∴△ABC∽△BDC,∴,設(shè)BC=BD=AD=x,則CD=4﹣x,∵BC2=AC×CD,∴x2=4×(4﹣x),解得x1=,x2=(舍去),∴BC的長.【點睛】本題主要考查了復(fù)雜作圖以及相似三角形的判定與性質(zhì),解決此類題目的關(guān)鍵是熟悉基本幾何圖形的性質(zhì),結(jié)合幾何圖形的基本性質(zhì)把復(fù)雜作圖拆解成基本作圖,逐步操作.22、(1)y=10x+100;(2)這種干果每千克應(yīng)降價9元;(3)該干果每千克降價5元時,商貿(mào)公司獲利最大,最大利潤是2250元.【解析】
(1)由待定系數(shù)法即可得到函數(shù)的解析式;(2)根據(jù)銷售量×每千克利潤=總利潤列出方程求解即可;(3)根據(jù)銷售量×每千克利潤=總利潤列出函數(shù)解析式求解即可.【詳解】(1)設(shè)y與x之間的函數(shù)關(guān)系式為:y=kx+b,把(2,120)和(4,140)代入得,,解得:,∴
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 甜菜種植合同法院判決書
- 《藍田股份分析案例》課件
- 2025年南寧貨運從業(yè)資格證模擬考試題庫及答案解析
- 2025年鹽城道路運輸從業(yè)資格證考哪些項目
- 2025年許昌貨運從業(yè)資格證模擬考試系統(tǒng)
- 2025年云南貨運從業(yè)資格證考試題及答案詳解
- 健身房環(huán)境衛(wèi)生保潔員招聘合同
- 城市景觀照明施工合同范本
- 智能家居網(wǎng)絡(luò)安全操作規(guī)程
- 印刷行業(yè)安全規(guī)程
- 高三英語二輪復(fù)習(xí)寫作專項讀后續(xù)寫人物情緒描寫方法課件
- 殯儀館物業(yè)服務(wù)方案
- 電廠缺陷分析報告
- 化工裝備的選型與設(shè)計
- 外賣小哥培訓(xùn)道路安全管理
- 上市公司投資報告分析報告
- 中醫(yī)診療設(shè)備種類目錄
- (完整)馬克思主義政治經(jīng)濟學(xué)習(xí)題及參考答案
- 醫(yī)院預(yù)防保健科工作制度及職責(zé)范本
- 分離工程課件
- 中國風(fēng)古詩詞詩歌朗讀比賽大會唐詩宋詞含內(nèi)容課件兩篇
評論
0/150
提交評論