版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2021-2022高考數(shù)學(xué)模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某單位去年的開支分布的折線圖如圖1所示,在這一年中的水、電、交通開支(單位:萬元)如圖2所示,則該單位去年的水費開支占總開支的百分比為()A. B. C. D.2.若sin(α+3π2A.-12 B.-133.在中,“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件4.記為等差數(shù)列的前項和.若,,則()A.5 B.3 C.-12 D.-135.已知雙曲線與雙曲線有相同的漸近線,則雙曲線的離心率為()A. B. C. D.6.已知六棱錐各頂點都在同一個球(記為球)的球面上,且底面為正六邊形,頂點在底面上的射影是正六邊形的中心,若,,則球的表面積為()A. B. C. D.7.記其中表示不大于x的最大整數(shù),若方程在在有7個不同的實數(shù)根,則實數(shù)k的取值范圍()A. B. C. D.8.如圖是甲、乙兩位同學(xué)在六次數(shù)學(xué)小測試(滿分100分)中得分情況的莖葉圖,則下列說法錯誤的是()A.甲得分的平均數(shù)比乙大 B.甲得分的極差比乙大C.甲得分的方差比乙小 D.甲得分的中位數(shù)和乙相等9.設(shè)函數(shù)在上可導(dǎo),其導(dǎo)函數(shù)為,若函數(shù)在處取得極大值,則函數(shù)的圖象可能是()A. B.C. D.10.已知,則()A. B. C. D.211.下列函數(shù)中,既是奇函數(shù),又在上是增函數(shù)的是().A. B.C. D.12.若直線y=kx+1與圓x2+y2=1相交于P、Q兩點,且∠POQ=120°(其中O為坐標(biāo)原點),則k的值為()A. B. C.或- D.和-二、填空題:本題共4小題,每小題5分,共20分。13.?dāng)?shù)列滿足,則,_____.若存在n∈N*使得成立,則實數(shù)λ的最小值為______14.若x,y滿足,且y≥?1,則3x+y的最大值_____15.設(shè)O為坐標(biāo)原點,,若點B(x,y)滿足,則的最大值是__________.16.復(fù)數(shù)(其中i為虛數(shù)單位)的共軛復(fù)數(shù)為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,三棱柱的側(cè)棱垂直于底面,且,,,,是棱的中點.(1)證明:;(2)求二面角的余弦值.18.(12分)已知函數(shù).(1)若,求函數(shù)的單調(diào)區(qū)間;(2)若恒成立,求實數(shù)的取值范圍.19.(12分)某保險公司給年齡在歲的民眾提供某種疾病的一年期醫(yī)療保險,現(xiàn)從名參保人員中隨機抽取名作為樣本進行分析,按年齡段分成了五組,其頻率分布直方圖如下圖所示;參保年齡與每人每年應(yīng)交納的保費如下表所示.據(jù)統(tǒng)計,該公司每年為這一萬名參保人員支出的各種費用為一百萬元.年齡(單位:歲)保費(單位:元)(1)用樣本的頻率分布估計總體分布,為使公司不虧本,求精確到整數(shù)時的最小值;(2)經(jīng)調(diào)查,年齡在之間的老人每人中有人患該項疾病(以此頻率作為概率).該病的治療費為元,如果參保,保險公司補貼治療費元.某老人年齡歲,若購買該項保險(取中的).針對此疾病所支付的費用為元;若沒有購買該項保險,針對此疾病所支付的費用為元.試比較和的期望值大小,并判斷該老人購買此項保險是否劃算?20.(12分)若數(shù)列前n項和為,且滿足(t為常數(shù),且)(1)求數(shù)列的通項公式:(2)設(shè),且數(shù)列為等比數(shù)列,令,.求證:.21.(12分)已知函數(shù).(Ⅰ)求函數(shù)的單調(diào)區(qū)間;(Ⅱ)當(dāng)時,求函數(shù)在上最小值.22.(10分)中國古建筑中的窗飾是藝術(shù)和技術(shù)的統(tǒng)一體,給人于美的享受.如圖(1)為一花窗;圖(2)所示是一扇窗中的一格,呈長方形,長30cm,寬26cm,其內(nèi)部窗芯(不含長方形邊框)用一種條形木料做成,由兩個菱形和六根支條構(gòu)成,整個窗芯關(guān)于長方形邊框的兩條對稱軸成軸對稱.設(shè)菱形的兩條對角線長分別為xcm和ycm,窗芯所需條形木料的長度之和為L.(1)試用x,y表示L;(2)如果要求六根支條的長度均不小于2cm,每個菱形的面積為130cm2,那么做這樣一個窗芯至少需要多長的條形木料(不計榫卯及其它損耗)?
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
由折線圖找出水、電、交通開支占總開支的比例,再計算出水費開支占水、電、交通開支的比例,相乘即可求出水費開支占總開支的百分比.【詳解】水費開支占總開支的百分比為.故選:A【點睛】本題考查折線圖與柱形圖,屬于基礎(chǔ)題.2.B【解析】
由三角函數(shù)的誘導(dǎo)公式和倍角公式化簡即可.【詳解】因為sinα+3π2=3故選B【點睛】本題考查了三角函數(shù)的誘導(dǎo)公式和倍角公式,靈活掌握公式是關(guān)鍵,屬于基礎(chǔ)題.3.D【解析】
通過列舉法可求解,如兩角分別為時【詳解】當(dāng)時,,但,故充分條件推不出;當(dāng)時,,但,故必要條件推不出;所以“”是“”的既不充分也不必要條件.故選:D.【點睛】本題考查命題的充分與必要條件判斷,三角函數(shù)在解三角形中的具體應(yīng)用,屬于基礎(chǔ)題4.B【解析】
由題得,,解得,,計算可得.【詳解】,,,,解得,,.故選:B【點睛】本題主要考查了等差數(shù)列的通項公式,前項和公式,考查了學(xué)生運算求解能力.5.C【解析】
由雙曲線與雙曲線有相同的漸近線,列出方程求出的值,即可求解雙曲線的離心率,得到答案.【詳解】由雙曲線與雙曲線有相同的漸近線,可得,解得,此時雙曲線,則曲線的離心率為,故選C.【點睛】本題主要考查了雙曲線的標(biāo)準(zhǔn)方程及其簡單的幾何性質(zhì)的應(yīng)用,其中解答中熟記雙曲線的幾何性質(zhì),準(zhǔn)確運算是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題.6.D【解析】
由題意,得出六棱錐為正六棱錐,求得,再結(jié)合球的性質(zhì),求得球的半徑,利用表面積公式,即可求解.【詳解】由題意,六棱錐底面為正六邊形,頂點在底面上的射影是正六邊形的中心,可得此六棱錐為正六棱錐,又由,所以,在直角中,因為,所以,設(shè)外接球的半徑為,在中,可得,即,解得,所以外接球的表面積為.故選:D.【點睛】本題主要考查了正棱錐的幾何結(jié)構(gòu)特征,以及外接球的表面積的計算,其中解答中熟記幾何體的結(jié)構(gòu)特征,熟練應(yīng)用球的性質(zhì)求得球的半徑是解答的關(guān)鍵,著重考查了空間想象能力,以及推理與計算能力,屬于中檔試題.7.D【解析】
做出函數(shù)的圖象,問題轉(zhuǎn)化為函數(shù)的圖象在有7個交點,而函數(shù)在上有3個交點,則在上有4個不同的交點,數(shù)形結(jié)合即可求解.【詳解】作出函數(shù)的圖象如圖所示,由圖可知方程在上有3個不同的實數(shù)根,則在上有4個不同的實數(shù)根,當(dāng)直線經(jīng)過時,;當(dāng)直線經(jīng)過時,,可知當(dāng)時,直線與的圖象在上有4個交點,即方程,在上有4個不同的實數(shù)根.故選:D.【點睛】本題考查方程根的個數(shù)求參數(shù),利用函數(shù)零點和方程之間的關(guān)系轉(zhuǎn)化為兩個函數(shù)的交點是解題的關(guān)鍵,運用數(shù)形結(jié)合是解決函數(shù)零點問題的基本思想,屬于中檔題.8.B【解析】
由平均數(shù)、方差公式和極差、中位數(shù)概念,可得所求結(jié)論.【詳解】對于甲,;對于乙,,故正確;甲的極差為,乙的極差為,故錯誤;對于甲,方差.5,對于乙,方差,故正確;甲得分的中位數(shù)為,乙得分的中位數(shù)為,故正確.故選:.【點睛】本題考查莖葉圖的應(yīng)用,考查平均數(shù)和方差等概念,培養(yǎng)計算能力,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.9.B【解析】
由題意首先確定導(dǎo)函數(shù)的符號,然后結(jié)合題意確定函數(shù)在區(qū)間和處函數(shù)的特征即可確定函數(shù)圖像.【詳解】函數(shù)在上可導(dǎo),其導(dǎo)函數(shù)為,且函數(shù)在處取得極大值,當(dāng)時,;當(dāng)時,;當(dāng)時,.時,,時,,當(dāng)或時,;當(dāng)時,.故選:【點睛】根據(jù)函數(shù)取得極大值,判斷導(dǎo)函數(shù)在極值點附近左側(cè)為正,右側(cè)為負(fù),由正負(fù)情況討論圖像可能成立的選項,是判斷圖像問題常見方法,有一定難度.10.B【解析】
結(jié)合求得的值,由此化簡所求表達(dá)式,求得表達(dá)式的值.【詳解】由,以及,解得..故選:B【點睛】本小題主要考查利用同角三角函數(shù)的基本關(guān)系式化簡求值,考查二倍角公式,屬于中檔題.11.B【解析】
奇函數(shù)滿足定義域關(guān)于原點對稱且,在上即可.【詳解】A:因為定義域為,所以不可能時奇函數(shù),錯誤;B:定義域關(guān)于原點對稱,且滿足奇函數(shù),又,所以在上,正確;C:定義域關(guān)于原點對稱,且滿足奇函數(shù),,在上,因為,所以在上不是增函數(shù),錯誤;D:定義域關(guān)于原點對稱,且,滿足奇函數(shù),在上很明顯存在變號零點,所以在上不是增函數(shù),錯誤;故選:B【點睛】此題考查判斷函數(shù)奇偶性和單調(diào)性,注意奇偶性的前提定義域關(guān)于原點對稱,屬于簡單題目.12.C【解析】
直線過定點,直線y=kx+1與圓x2+y2=1相交于P、Q兩點,且∠POQ=120°(其中O為原點),可以發(fā)現(xiàn)∠QOx的大小,求得結(jié)果.【詳解】如圖,直線過定點(0,1),∵∠POQ=120°∴∠OPQ=30°,?∠1=120°,∠2=60°,∴由對稱性可知k=±.故選C.【點睛】本題考查過定點的直線系問題,以及直線和圓的位置關(guān)系,是基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
利用“退一作差法”求得數(shù)列的通項公式,將不等式分離常數(shù),利用商比較法求得的最小值,由此求得的取值范圍,進而求得的最小值.【詳解】當(dāng)時兩式相減得所以當(dāng)時,滿足上式綜上所述存在使得成立的充要條件為存在使得,設(shè),所以,即,所以單調(diào)遞增,的最小項,即有的最小值為.故答案為:(1).(2).【點睛】本小題主要考查根據(jù)遞推關(guān)系式求數(shù)列的通項公式,考查數(shù)列單調(diào)性的判斷方法,考查不等式成立的存在性問題的求解策略,屬于中檔題.14.5.【解析】
由約束條件作出可行域,令z=3x+y,化為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得答案.【詳解】由題意作出可行域如圖陰影部分所示.設(shè),當(dāng)直線經(jīng)過點時,取最大值5.故答案為:5【點睛】本題考查簡單的線性規(guī)劃,考查數(shù)形結(jié)合的解題思想方法,是中檔題.15.【解析】,可行域如圖,直線與圓相切時取最大值,由16.【解析】
利用復(fù)數(shù)的乘法運算求出,再利用共軛復(fù)數(shù)的概念即可求解.【詳解】由,則.故答案為:【點睛】本題考查了復(fù)數(shù)的四則運算以及共軛復(fù)數(shù)的概念,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)詳見解析;(2).【解析】
(1)根據(jù)平面,四邊形是矩形,由為中點,且,利用平面幾何知識,可得,又平面,所以,根據(jù)線面垂直的判定定理可有平面,從而得證.(2)分別以,,為,,軸建立空間直角坐標(biāo)系,得到,,,,分別求得平和平面的法向量,代入二面角向量公式求解.【詳解】(1)證明:∵平面,∴四邊形是矩形,∵為中點,且,∴,∵,,,∴.∴,∵,∴與相似,∴,∴,∴,∵,∴平面,∴平面,∵平面,∴,∴平面,∴.(2)如圖,分別以,,為,,軸建立空間直角坐標(biāo)系,則,,,設(shè)平面的法向量為,則,,解得:,同理,平面的法向量,設(shè)二面角的大小為,則.即二面角的余弦值為.【點睛】本題主要考查線線垂直、線面垂直的轉(zhuǎn)化以及二面角的求法,還考查了轉(zhuǎn)化化歸的思想和推理論證、運算求解的能力,屬于中檔題.18.(1)增區(qū)間為,減區(qū)間為;(2).【解析】
(1)將代入函數(shù)的解析式,利用導(dǎo)數(shù)可得出函數(shù)的單調(diào)區(qū)間;(2)求函數(shù)的導(dǎo)數(shù),分類討論的范圍,利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,求出函數(shù)的最值可判斷是否恒成立,可得實數(shù)的取值范圍.【詳解】(1)當(dāng)時,,則,當(dāng)時,,則,此時,函數(shù)為減函數(shù);當(dāng)時,,則,此時,函數(shù)為增函數(shù).所以,函數(shù)的增區(qū)間為,減區(qū)間為;(2),則,.①當(dāng)時,即當(dāng)時,,由,得,此時,函數(shù)為增函數(shù);由,得,此時,函數(shù)為減函數(shù).則,不合乎題意;②當(dāng)時,即時,.不妨設(shè),其中,令,則或.(i)當(dāng)時,,當(dāng)時,,此時,函數(shù)為增函數(shù);當(dāng)時,,此時,函數(shù)為減函數(shù);當(dāng)時,,此時,函數(shù)為增函數(shù).此時,而,構(gòu)造函數(shù),,則,所以,函數(shù)在區(qū)間上單調(diào)遞增,則,即當(dāng)時,,所以,.,符合題意;②當(dāng)時,,函數(shù)在上為增函數(shù),,符合題意;③當(dāng)時,同理可得函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,此時,則,解得.綜上所述,實數(shù)的取值范圍是.【點睛】本題考查導(dǎo)數(shù)知識的運用,考查函數(shù)的單調(diào)性與最值,考查恒成立問題,正確求導(dǎo)和分類討論是關(guān)鍵,屬于難題.19.(1)30;(2),比較劃算.【解析】
(1)由頻率和為1求出,根據(jù)的值求出保費的平均值,然后解一元一次不等式即可求出結(jié)果,最后取近似值即可;(2)分別計算參保與不參保時的期望,,比較大小即可.【詳解】解:(1)由,解得.保險公司每年收取的保費為:∴要使公司不虧本,則,即解得∴.(2)①若該老人購買了此項保險,則的取值為∴(元).②若該老人沒有購買此項保險,則的取值為.∴(元).∴年齡為的該老人購買此項保險比較劃算.【點睛】本題考查學(xué)生利用相關(guān)統(tǒng)計圖表知識處理實際問題的能力,掌握頻率分布直方圖的基本性質(zhì),知道數(shù)學(xué)期望是平均數(shù)的另一種數(shù)學(xué)語言,為容易題.20.(1)(2)詳見解析【解析】
(1)利用可得的遞推關(guān)系,從而可求其通項.(2)由為等比數(shù)列可得,從而可得的通項,利用錯位相減法可得的前項和,利用不等式的性質(zhì)可證.【詳解】(1)由題意,得:(t為常數(shù),且),當(dāng)時,得,得.由,故,,故.(2)由,由為等比數(shù)列可知:,又,故,化簡得到,所以或(舍).所以,,則.設(shè)的前n項和為.則,相減可得【點睛】數(shù)列的通項與前項和的關(guān)系式,我們常利用這個關(guān)系式實現(xiàn)與之間的相互轉(zhuǎn)化.數(shù)列求和關(guān)鍵看通項的結(jié)構(gòu)形式,如果通項是等差數(shù)列與等比數(shù)列的和,則用分組求和法;如果通項是等差數(shù)列與等比數(shù)列的乘積,則用錯位相減法;如果通項可以拆成一個數(shù)列連續(xù)兩項的差,那么用裂項相消法;如果通項的符號有規(guī)律的出現(xiàn),則用并項求和法.21.(Ⅰ)見解析;(Ⅱ)當(dāng)時,函數(shù)的最小值是;當(dāng)時,函數(shù)的最小值是【解析】
(1)求出導(dǎo)函數(shù),并且解出它的零點x=,再分區(qū)間討論導(dǎo)數(shù)的正負(fù),即可得到函數(shù)f(x)的單調(diào)區(qū)間;
(2)分三種情況加以討論,結(jié)合函數(shù)的單調(diào)性與函數(shù)值的大小比較,即可得到當(dāng)0<a<ln2時,函數(shù)f(x)的最小值是-a;當(dāng)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 洗滌劑的課程設(shè)計
- 家居建材行業(yè)銷售員培訓(xùn)心得
- 班級心理健康活動的設(shè)計計劃
- 【八年級下冊歷史】第1課 中華人民共和國成立 同步練習(xí)
- 農(nóng)業(yè)行業(yè)話務(wù)員工作心得
- 化工行業(yè)銷售工作總結(jié)
- 2024年秋季開學(xué)第一課教案
- 2024年萍鄉(xiāng)衛(wèi)生職業(yè)學(xué)院單招職業(yè)技能測試題庫標(biāo)準(zhǔn)卷
- 2024年牛郎織女教案 (一)
- 2025屆武威市高三語文(上)期末聯(lián)考試卷及答案解析
- 廣東海洋大學(xué)大數(shù)據(jù)庫課程設(shè)計
- 商業(yè)發(fā)票INVOICE模板
- (完整版)食堂管理制度及流程
- 超聲波焊接作業(yè)指導(dǎo)書(共8頁)
- 某醫(yī)院后備人才梯隊建設(shè)方案
- 二年級上冊英語教案Unit6 Lesson22︱北京課改版
- 桂枝加龍骨牡蠣湯_金匱要略卷上_方劑加減變化匯總
- 電機與電氣控制技術(shù)PPT課件
- 廢棄鉆井泥漿和壓裂返排液無害化處理研究報告
- 論文-基于單片機的搶答器.doc
- 《AFM簡介實驗》ppt課件
評論
0/150
提交評論