版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023中考數(shù)學(xué)模擬試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.某大型企業(yè)員工總數(shù)為28600人,數(shù)據(jù)“28600”用科學(xué)記數(shù)法可表示為()A.0.286×105B.2.86×105C.28.6×103D.2.86×1042.若a與﹣3互為倒數(shù),則a=()A.3 B.﹣3 C.13 D.-3.若關(guān)于的一元二次方程的一個(gè)根是0,則的值是()A.1 B.-1 C.1或-1 D.4.《九章算術(shù)》是中國古代數(shù)學(xué)的重要著作,方程術(shù)是它的最高成就,其中記載:今有牛五、羊二,直金十兩;牛二、羊五,直金八兩。問:牛、羊各直金幾何?譯文:“假設(shè)有5頭牛、2只羊,值金10兩;2頭牛、5只羊,值金8兩。問:每頭牛、每只羊各值金多少兩?”設(shè)每頭牛值金x兩,每只羊值金y兩,則列方程組錯(cuò)誤的是()A. B. C. D.5.如圖,直線y=kx+b與x軸交于點(diǎn)(﹣4,0),則y>0時(shí),x的取值范圍是()A.x>﹣4 B.x>0 C.x<﹣4 D.x<06.小明和小亮按如圖所示的規(guī)則玩一次“錘子、剪刀、布”游戲,下列說法中正確的是()A.小明不是勝就是輸,所以小明勝的概率為 B.小明勝的概率是,所以輸?shù)母怕适荂.兩人出相同手勢的概率為 D.小明勝的概率和小亮勝的概率一樣7.一次函數(shù)y1=kx+1﹣2k(k≠0)的圖象記作G1,一次函數(shù)y2=2x+3(﹣1<x<2)的圖象記作G2,對(duì)于這兩個(gè)圖象,有以下幾種說法:①當(dāng)G1與G2有公共點(diǎn)時(shí),y1隨x增大而減?。虎诋?dāng)G1與G2沒有公共點(diǎn)時(shí),y1隨x增大而增大;③當(dāng)k=2時(shí),G1與G2平行,且平行線之間的距離為65下列選項(xiàng)中,描述準(zhǔn)確的是()A.①②正確,③錯(cuò)誤 B.①③正確,②錯(cuò)誤C.②③正確,①錯(cuò)誤 D.①②③都正確8.如圖,如果從半徑為9cm的圓形紙片剪去圓周的一個(gè)扇形,將留下的扇形圍成一個(gè)圓錐(接縫處不重疊),那么這個(gè)圓錐的高為A.6cm B.cm C.8cm D.cm9.如圖,在△ABC中,∠AED=∠B,DE=6,AB=10,AE=8,則BC的長度為()A. B. C.3 D.10.的倒數(shù)是()A. B.3 C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在矩形ABCD中,點(diǎn)E是邊CD的中點(diǎn),將△ADE沿AE折疊后得到△AFE,且點(diǎn)F在矩形ABCD內(nèi)部.將AF延長交邊BC于點(diǎn)G.若,則(用含k的代數(shù)式表示).12.如圖,AB∥CD,∠1=62°,FG平分∠EFD,則∠2=.13.唐老師為了了解學(xué)生的期末數(shù)學(xué)成績,在班級(jí)隨機(jī)抽查了10名學(xué)生的成績,其統(tǒng)計(jì)數(shù)據(jù)如下表:分?jǐn)?shù)(單位:分)10090807060人數(shù)14212則這10名學(xué)生的數(shù)學(xué)成績的中位數(shù)是_____分.14.如圖,已知正六邊形ABCDEF的外接圓半徑為2cm,則正六邊形的邊心距是__________cm.15.已知a+1a=3,則a16.我國經(jīng)典數(shù)學(xué)著作《九章算術(shù)》中有這樣一道名題,就是“引葭赴岸”問題,(如圖)題目是:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,適與岸齊,問水深,葭長各幾何?”題意是:有一正方形池塘,邊長為一丈,有棵蘆葦長在它的正中央,高出水面部分有一尺長,把蘆葦拉向岸邊,恰好碰到岸沿,問水深和蘆葦長各是多少?(小知識(shí):1丈=10尺)如果設(shè)水深為x尺,則蘆葦長用含x的代數(shù)式可表示為尺,根據(jù)題意列方程為.17.如圖,有一個(gè)橫截面邊緣為拋物線的水泥門洞,門洞內(nèi)的地面寬度為,兩側(cè)離地面高處各有一盞燈,兩燈間的水平距離為,則這個(gè)門洞的高度為_______.(精確到)三、解答題(共7小題,滿分69分)18.(10分)如圖1,點(diǎn)和矩形的邊都在直線上,以點(diǎn)為圓心,以24為半徑作半圓,分別交直線于兩點(diǎn).已知:,,矩形自右向左在直線上平移,當(dāng)點(diǎn)到達(dá)點(diǎn)時(shí),矩形停止運(yùn)動(dòng).在平移過程中,設(shè)矩形對(duì)角線與半圓的交點(diǎn)為(點(diǎn)為半圓上遠(yuǎn)離點(diǎn)的交點(diǎn)).如圖2,若與半圓相切,求的值;如圖3,當(dāng)與半圓有兩個(gè)交點(diǎn)時(shí),求線段的取值范圍;若線段的長為20,直接寫出此時(shí)的值.19.(5分)如圖,已知拋物線(>0)與軸交于A,B兩點(diǎn)(A點(diǎn)在B點(diǎn)的左邊),與軸交于點(diǎn)C。(1)如圖1,若△ABC為直角三角形,求的值;(2)如圖1,在(1)的條件下,點(diǎn)P在拋物線上,點(diǎn)Q在拋物線的對(duì)稱軸上,若以BC為邊,以點(diǎn)B,C,P,Q為頂點(diǎn)的四邊形是平行四邊形,求P點(diǎn)的坐標(biāo);(3)如圖2,過點(diǎn)A作直線BC的平行線交拋物線于另一點(diǎn)D,交軸交于點(diǎn)E,若AE:ED=1:4,求的值.20.(8分)如圖,在平行四邊形ABCD中,BD為對(duì)角線,AE⊥BD,CF⊥BD,垂足分別為E、F,連接AF、CE,求證:AF=CE.21.(10分)先化簡,再求值:,其中.22.(10分)先化簡,再求值:,其中與2,3構(gòu)成的三邊,且為整數(shù).23.(12分)((1)計(jì)算:;(2)先化簡,再求值:,其中a=.24.(14分)如圖,在長方形OABC中,O為平面直角坐標(biāo)系的原點(diǎn),點(diǎn)A坐標(biāo)為(a,0),點(diǎn)C的坐標(biāo)為(0,b),且a、b滿足+|b﹣6|=0,點(diǎn)B在第一象限內(nèi),點(diǎn)P從原點(diǎn)出發(fā),以每秒2個(gè)單位長度的速度沿著O﹣C﹣B﹣A﹣O的線路移動(dòng).a(chǎn)=,b=,點(diǎn)B的坐標(biāo)為;當(dāng)點(diǎn)P移動(dòng)4秒時(shí),請(qǐng)指出點(diǎn)P的位置,并求出點(diǎn)P的坐標(biāo);在移動(dòng)過程中,當(dāng)點(diǎn)P到x軸的距離為5個(gè)單位長度時(shí),求點(diǎn)P移動(dòng)的時(shí)間.
參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、D【解析】
用科學(xué)記數(shù)法表示較大的數(shù)時(shí),一般形式為a×10﹣n,其中1≤|a|<10,n為整數(shù),據(jù)此判斷即可【詳解】28600=2.86×1.故選D.【點(diǎn)睛】此題主要考查了用科學(xué)記數(shù)法表示較大的數(shù),一般形式為a×10﹣n,其中1≤|a|<10,確定a與n的值是解題的關(guān)鍵2、D【解析】試題分析:根據(jù)乘積是1的兩個(gè)數(shù)互為倒數(shù),可得3a=1,∴a=13故選C.考點(diǎn):倒數(shù).3、B【解析】
根據(jù)一元二次方程的解的定義把x=0代入方程得到關(guān)于a的一元二次方程,然后解此方程即可【詳解】把x=0代入方程得,解得a=±1.∵原方程是一元二次方程,所以
,所以,故故答案為B【點(diǎn)睛】本題考查了一元二次方程的解的定義:使一元二次方程左右兩邊成立的未知數(shù)的值叫一元二次方程的解.4、D【解析】
由5頭牛、2只羊,值金10兩可得:5x+2y=10,由2頭牛、5只羊,值金8兩可得2x+5y=8,則7頭牛、7只羊,值金18兩,據(jù)此可知7x+7y=18,據(jù)此可得答案.【詳解】解:設(shè)每頭牛值金x兩,每只羊值金y兩,
由5頭牛、2只羊,值金10兩可得:5x+2y=10,
由2頭牛、5只羊,值金8兩可得2x+5y=8,
則7頭牛、7只羊,值金18兩,據(jù)此可知7x+7y=18,
所以方程組錯(cuò)誤,
故選:D.【點(diǎn)睛】本題主要考查由實(shí)際問題抽象出二元一次方程組,解題的關(guān)鍵是理解題意找到相等關(guān)系及等式的基本性質(zhì).5、A【解析】試題分析:充分利用圖形,直接從圖上得出x的取值范圍.由圖可知,當(dāng)y<1時(shí),x<-4,故選C.考點(diǎn):本題考查的是一次函數(shù)的圖象點(diǎn)評(píng):解答本題的關(guān)鍵是掌握在x軸下方的部分y<1,在x軸上方的部分y>1.6、D【解析】
利用概率公式,一一判斷即可解決問題.【詳解】A、錯(cuò)誤.小明還有可能是平;B、錯(cuò)誤、小明勝的概率是
,所以輸?shù)母怕适且彩?;C、錯(cuò)誤.兩人出相同手勢的概率為;D、正確.小明勝的概率和小亮勝的概率一樣,概率都是;故選D.【點(diǎn)睛】本題考查列表法、樹狀圖等知識(shí).用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.7、D【解析】
畫圖,找出G2的臨界點(diǎn),以及G1的臨界直線,分析出G1過定點(diǎn),根據(jù)k的正負(fù)與函數(shù)增減變化的關(guān)系,結(jié)合函數(shù)圖象逐個(gè)選項(xiàng)分析即可解答.【詳解】解:一次函數(shù)y2=2x+3(﹣1<x<2)的函數(shù)值隨x的增大而增大,如圖所示,N(﹣1,2),Q(2,7)為G2的兩個(gè)臨界點(diǎn),易知一次函數(shù)y1=kx+1﹣2k(k≠0)的圖象過定點(diǎn)M(2,1),直線MN與直線MQ為G1與G2有公共點(diǎn)的兩條臨界直線,從而當(dāng)G1與G2有公共點(diǎn)時(shí),y1隨x增大而減??;故①正確;當(dāng)G1與G2沒有公共點(diǎn)時(shí),分三種情況:一是直線MN,但此時(shí)k=0,不符合要求;二是直線MQ,但此時(shí)k不存在,與一次函數(shù)定義不符,故MQ不符合題意;三是當(dāng)k>0時(shí),此時(shí)y1隨x增大而增大,符合題意,故②正確;當(dāng)k=2時(shí),G1與G2平行正確,過點(diǎn)M作MP⊥NQ,則MN=3,由y2=2x+3,且MN∥x軸,可知,tan∠PNM=2,∴PM=2PN,由勾股定理得:PN2+PM2=MN2∴(2PN)2+(PN)2=9,∴PN=35∴PM=65故③正確.綜上,故選:D.【點(diǎn)睛】本題是一次函數(shù)中兩條直線相交或平行的綜合問題,需要數(shù)形結(jié)合,結(jié)合一次函數(shù)的性質(zhì)逐條分析解答,難度較大.8、B【解析】試題分析:∵從半徑為9cm的圓形紙片上剪去圓周的一個(gè)扇形,∴留下的扇形的弧長==12π,根據(jù)底面圓的周長等于扇形弧長,∴圓錐的底面半徑r==6cm,∴圓錐的高為=3cm故選B.考點(diǎn):圓錐的計(jì)算.9、A【解析】∵∠AED=∠B,∠A=∠A
∴△ADE∽△ACB∴,∵DE=6,AB=10,AE=8,∴,解得BC=.故選A.10、A【解析】
解:的倒數(shù)是.故選A.【點(diǎn)睛】本題考查倒數(shù),掌握概念正確計(jì)算是解題關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、?!窘馕觥吭囶}分析:如圖,連接EG,∵,∴設(shè),則?!唿c(diǎn)E是邊CD的中點(diǎn),∴?!摺鰽DE沿AE折疊后得到△AFE,∴。易證△EFG≌△ECG(HL),∴?!??!嘣赗t△ABG中,由勾股定理得:,即?!??!啵ㄖ蝗≌担??!?。12、31°.【解析】試題分析:由AB∥CD,根據(jù)平行線的性質(zhì)得∠1=∠EFD=62°,然后根據(jù)角平分線的定義即可得到∠2的度數(shù).∵AB∥CD,∴∠1=∠EFD=62°,∵FG平分∠EFD,∴∠2=12∠EFD=1故答案是31°.考點(diǎn):平行線的性質(zhì).13、1【解析】
根據(jù)中位數(shù)的概念求解即可.【詳解】這組數(shù)據(jù)按照從小到大的順序排列為:60,60,70,80,80,90,90,90,90,100,則中位數(shù)為:=1.故答案為:1.【點(diǎn)睛】本題考查了中位數(shù)的概念:將一組數(shù)據(jù)按照從小到大(或從大到小)的順序排列,如果數(shù)據(jù)的個(gè)數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù);如果這組數(shù)據(jù)的個(gè)數(shù)是偶數(shù),則中間兩個(gè)數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).14、【解析】連接OA,作OM⊥AB于點(diǎn)M,∵正六邊形ABCDEF的外接圓半徑為2cm∴正六邊形的半徑為2cm,即OA=2cm在正六邊形ABCDEF中,∠AOM=30°,∴正六邊形的邊心距是OM=cos30°×OA=(cm)故答案為.15、7【解析】
根據(jù)完全平方公式可得:原式=(a+116、(x+1);.【解析】試題分析:設(shè)水深為x尺,則蘆葦長用含x的代數(shù)式可表示為(x+1)尺,根據(jù)題意列方程為.故答案為(x+1),.考點(diǎn):由實(shí)際問題抽象出一元二次方程;勾股定理的應(yīng)用.17、9.1【解析】
建立直角坐標(biāo)系,得到二次函數(shù),門洞高度即為二次函數(shù)的頂點(diǎn)的縱坐標(biāo)【詳解】如圖,以地面為x軸,門洞中點(diǎn)為O點(diǎn),畫出y軸,建立直角坐標(biāo)系由題意可知各點(diǎn)坐標(biāo)為A(-4,0)B(4,0)D(-3,4)設(shè)拋物線解析式為y=ax2+c(a≠0)把B、D兩點(diǎn)帶入解析式可得解析式為,則C(0,)所以門洞高度為m≈9.1m【點(diǎn)睛】本題考查二次函數(shù)的簡單應(yīng)用,能夠建立直角坐標(biāo)系解出二次函數(shù)解析式是本題關(guān)鍵三、解答題(共7小題,滿分69分)18、(1);(2);(3)或【解析】
(1)如圖2,連接OP,則DF與半圓相切,利用△OPD≌△FCD(AAS),可得:OD=DF=30;(2)利用,求出,則;DF與半圓相切,由(1)知:PD=CD=18,即可求解;(3)設(shè)PG=GH=m,則:,求出,利用,即可求解.【詳解】(1)如圖,連接∵與半圓相切,∴,∴,在矩形中,,∵,根據(jù)勾股定理,得在和中,∴∴(2)如圖,當(dāng)點(diǎn)與點(diǎn)重合時(shí),過點(diǎn)作與點(diǎn),則∵且,由(1)知:∴,∴,∴當(dāng)與半圓相切時(shí),由(1)知:,∴(3)設(shè)半圓與矩形對(duì)角線交于點(diǎn)P、H,過點(diǎn)O作OG⊥DF,則PG=GH,,則,設(shè):PG=GH=m,則:,,整理得:25m2-640m+1216=0,解得:,.【點(diǎn)睛】本題考查的是圓的基本知識(shí)綜合運(yùn)用,涉及到直線與圓的位置關(guān)系、解直角三角形等知識(shí),其中(3),正確畫圖,作等腰三角形OPH的高OG,是本題的關(guān)鍵.19、(1);(2)點(diǎn)P的坐標(biāo)為;(3).【解析】
(1)利用三角形相似可求AO?OB,再由一元二次方程根與系數(shù)關(guān)系求AO?OB構(gòu)造方程求n;(2)求出B、C坐標(biāo),設(shè)出點(diǎn)Q坐標(biāo),利用平行四邊形對(duì)角線互相平分性質(zhì),分類討論點(diǎn)P坐標(biāo),分別代入拋物線解析式,求出Q點(diǎn)坐標(biāo);(3)設(shè)出點(diǎn)D坐標(biāo)(a,b),利用相似表示OA,再由一元二次方程根與系數(shù)關(guān)系表示OB,得到點(diǎn)B坐標(biāo),進(jìn)而找到b與a關(guān)系,代入拋物線求a、n即可.【詳解】(1)若△ABC為直角三角形∴△AOC∽△COB∴OC2=AO?OB當(dāng)y=0時(shí),0=x2-x-n由一元二次方程根與系數(shù)關(guān)系-OA?OB=OC2n2==?2n解得n=0(舍去)或n=2∴拋物線解析式為y=;(2)由(1)當(dāng)=0時(shí)解得x1=-1,x2=4∴OA=1,OB=4∴B(4,0),C(0,-2)∵拋物線對(duì)稱軸為直線x=-=?∴設(shè)點(diǎn)Q坐標(biāo)為(,b)由平行四邊形性質(zhì)可知當(dāng)BQ、CP為平行四邊形對(duì)角線時(shí),點(diǎn)P坐標(biāo)為(,b+2)代入y=x2-x-2解得b=,則P點(diǎn)坐標(biāo)為(,)當(dāng)CQ、PB為為平行四邊形對(duì)角線時(shí),點(diǎn)P坐標(biāo)為(-,b-2)代入y=x2-x-2解得b=,則P坐標(biāo)為(-,)綜上點(diǎn)P坐標(biāo)為(,),(-,);(3)設(shè)點(diǎn)D坐標(biāo)為(a,b)∵AE:ED=1:4則OE=b,OA=a∵AD∥AB∴△AEO∽△BCO∵OC=n∴∴OB=由一元二次方程根與系數(shù)關(guān)系得,∴b=a2將點(diǎn)A(-a,0),D(a,a2)代入y=x2-x-n解得a=6或a=0(舍去)則n=.【點(diǎn)睛】本題是代數(shù)幾何綜合題,考查了二次函數(shù)圖象性質(zhì)、一元二次方程根與系數(shù)關(guān)系、三角形相似以及平行四邊形的性質(zhì),解答關(guān)鍵是綜合運(yùn)用數(shù)形結(jié)合分類討論思想.20、見解析【解析】
易證△ABE≌△CDF,得AE=CF,即可證得△AEF≌△CFE,即可得證.【詳解】在平行四邊形ABCD中,AB∥CD,AB=CD∴∠ABE=∠CDF,又AE⊥BD,CF⊥BD∴△ABE≌△CDF(AAS),∴AE=CF又∠AEF=∠CFE,EF=FE,∴△AEF≌△CFE(SAS)∴AF=CE.【點(diǎn)睛】此題主要考查平行四邊形的性質(zhì)與全等三角形的判定與性質(zhì),解題的關(guān)鍵是熟知平行四邊形的性質(zhì)定理.21、-1,-9.【解析】
先去括號(hào),再合并同類項(xiàng);最后把x=-2代入即可.【詳解】原式=,當(dāng)x=-2時(shí),原式=-8-1=-9.【點(diǎn)睛】本題考查了整式的混合運(yùn)算及化簡求值,關(guān)鍵是先按運(yùn)算順序把整式化簡,再把對(duì)應(yīng)字母的值代入求整式的值.22、1【解析】試題分析:先進(jìn)行分式的除法運(yùn)算,再進(jìn)行分式的加減法運(yùn)算,根據(jù)三角形三邊的關(guān)系確定出a的值,然后代入進(jìn)行計(jì)算即可.試題解析:原式=,∵a與2、3構(gòu)成△ABC的三邊,∴3?2<a<3+2,即1<a<5,又∵a為整數(shù),∴a=2或3或4,∵當(dāng)x=2或3時(shí),原分式無意義,應(yīng)舍去,∴當(dāng)a=4時(shí),原式==123
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 農(nóng)村旱地合同(2篇)
- Unit3Sport and Fitness(詞匯短語句式)-2025屆高三人教版英語一輪復(fù)習(xí)闖關(guān)攻略(解析版)
- 2021-2026年中國天然植物殺蟲劑市場深度分析及投資戰(zhàn)略咨詢報(bào)告
- 2025陽泉市豆類種植收購合同
- 2024年度天津市公共營養(yǎng)師之二級(jí)營養(yǎng)師能力測試試卷B卷附答案
- 2024年度天津市公共營養(yǎng)師之三級(jí)營養(yǎng)師強(qiáng)化訓(xùn)練試卷B卷附答案
- 2024年度四川省公共營養(yǎng)師之二級(jí)營養(yǎng)師每日一練試卷B卷含答案
- 中國魚豆腐行業(yè)市場調(diào)查研究報(bào)告
- 2020-2025年中國注射用鹽酸頭孢替安市場前景預(yù)測及投資規(guī)劃研究報(bào)告
- 2025年純棉紗卡項(xiàng)目可行性研究報(bào)告
- 人教版美術(shù)五年級(jí)上冊(cè)《第2課 色彩的和諧》說課稿2
- 2024年6月浙江省高考?xì)v史試卷(真題+答案)
- 住友(SWS)汽車連接器(Connectors)產(chǎn)品配套手冊(cè)
- 辦公樓室內(nèi)裝飾工程施工設(shè)計(jì)方案技術(shù)標(biāo)范本
- 2023年香港華夏杯六年級(jí)競賽初賽數(shù)學(xué)試卷
- 高中數(shù)學(xué)放縮法
- 上海市閔行區(qū)2024-2025學(xué)年八年級(jí)(上)期末物理試卷(解析版)
- 2024年國考行測真題-言語理解與表達(dá)真題及完整答案1套
- 人教版三年級(jí)上冊(cè)數(shù)學(xué)期末測試卷可打印
- 醫(yī)療高級(jí)職稱評(píng)審論文答辯
- 設(shè)計(jì)服務(wù)保障措施方案
評(píng)論
0/150
提交評(píng)論