流體力學(xué)(熱能)第7章一元?dú)怏w動力學(xué)基礎(chǔ)_第1頁
流體力學(xué)(熱能)第7章一元?dú)怏w動力學(xué)基礎(chǔ)_第2頁
流體力學(xué)(熱能)第7章一元?dú)怏w動力學(xué)基礎(chǔ)_第3頁
流體力學(xué)(熱能)第7章一元?dú)怏w動力學(xué)基礎(chǔ)_第4頁
流體力學(xué)(熱能)第7章一元?dú)怏w動力學(xué)基礎(chǔ)_第5頁
已閱讀5頁,還剩24頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

第九章一元?dú)怏w動力學(xué)基礎(chǔ)前言:在前面各章中,除了個別情況(如水擊問題)外,均未考慮流體的壓縮性,這對一般溫度、壓強(qiáng)下的液體流動和流速、壓強(qiáng)均不高的氣體流動來說都是允許的。但是,當(dāng)氣流速度較高,所受壓強(qiáng)較大時,氣體的密度將發(fā)生顯著的變化,從而引起氣流運(yùn)動形態(tài)和運(yùn)動參數(shù)的變化,它與不可壓縮流體運(yùn)動有著本質(zhì)的差別。在這種情況下,必須考慮氣體的壓縮性,否則將導(dǎo)致錯誤的結(jié)果,即考慮氣體密度隨壓強(qiáng)和溫度的變化。本章主要內(nèi)容:介紹一維可壓縮流體的基本方程和可壓縮氣體在管中的流動?!?-1理想氣體一元恒定流的基本方程(能量方程)氣體一元恒定流動的運(yùn)動微分方程:1、氣體一元定容流動的能量方程

ρ=常數(shù)常數(shù)2、氣體一元等溫流動的能量方程3、氣體一元絕熱流動的能量方程絕熱過程:等熵過程:(1)可變?yōu)椋?)(3)引入焓

任意兩斷面:說明:進(jìn)行氣體動力學(xué)計(jì)算時,需要熱力學(xué)知識,壓強(qiáng)、溫度只能用絕對壓強(qiáng)和卡爾文溫度(絕對溫度)。u:單位質(zhì)量氣體所具有的內(nèi)能例9-1、9-2p252§9-2音速滯止參數(shù)馬赫數(shù)一、音速1、概念:音速指聲音在流體中的傳播速度。事實(shí)上,在靜止或運(yùn)動著的流體中,任何微小的擾動(如壓強(qiáng)、流速、密度等的變化)都將以波的形式向四面八方傳播,其傳播速度就是聲音在流體中的傳播速度,用符號c表示。下面結(jié)合擾動波傳播的物理過程,具體導(dǎo)出音速的計(jì)算公式。2、計(jì)算公式FAdvdvccc-dv小擾動波波峰1122分析:小擾動波傳播的物理過程,等截面直管,管中充滿靜止的可壓縮氣體,密度為ρ,壓強(qiáng)為p,F(xiàn)作用

dv向右運(yùn)動,產(chǎn)生微小的平面擾動波,波速為c

。坐標(biāo)固在波峰上。如圖:(1)連續(xù)性方程:1-2斷面的控制體略去二階無窮小量(2)動量方程:(質(zhì)量力為零,忽略切應(yīng)力)整理后,兩式消去dv,可得:

音速公式進(jìn)一步研究:(1)3、音速的性質(zhì)與意義性質(zhì):(1)c反映流體壓縮性的大小;(2)c與T有關(guān);(3)c與k、R有關(guān)(氣體性質(zhì)),各種氣體有自己的音速值??諝庵幸羲賑=340m/s,氫氣中c=1295m/s。意義:氣體動力學(xué)中,音速是一個重要參數(shù),一是判斷氣體壓縮性對流動影響的一個標(biāo)準(zhǔn);二是判別流動型態(tài)的標(biāo)準(zhǔn)。(2)二、滯止參數(shù)1、滯止參數(shù):氣流某斷面的流速,設(shè)想以無摩擦絕熱過程降低至零時,該斷面的氣流狀態(tài)為滯止?fàn)顟B(tài),相應(yīng)的氣流參數(shù)稱滯止參數(shù)。(等熵過程)2、參數(shù)的計(jì)算公式,根據(jù)能量方程及有關(guān)斷面參數(shù)求得。分析:(1)等熵流動,各滯止參數(shù)不變,反映全部能量;(2)等熵流動,v

,則沿程下降;(3)由于v存在,c<c0,cmax=c0;(4)有摩擦絕熱氣流中,不變,總能量不變;(5)有摩擦等溫氣流中,與外交換熱量,使T0沿程變化。三、馬赫數(shù)1、定義:當(dāng)?shù)貧饬魉俣葀與音速c的比值,稱為馬赫數(shù),用M表示。為便于分析計(jì)算,把滯止參數(shù)與斷面參數(shù)表示為馬赫數(shù)的函數(shù)。已知滯止參數(shù),M,可求斷面參數(shù)。2、M的意義

無因次數(shù),其物理意義為:反映慣性力與彈性力的對比關(guān)系。(2)判斷氣流壓縮性影響程度的指標(biāo)

氣體的壓縮性隨M的增大而增大。流速高,氣體的壓縮性影響顯著提高。實(shí)際工程中常用流速判別氣流按可壓縮氣體或不可壓縮氣體的界限。常溫下(15o),M=0.2,v≤0.2×340m/s=68m/s,按不可壓縮液體處理。(ρ,p,T變化不顯著)

v>68m/s時,壓縮性不可忽略。(1)判斷可壓縮性流體流動型態(tài)的重要參數(shù)。

M>1,v>c

超音速流動,氣流參數(shù)不能向上游傳播,只向下游。

M<1,v<c亞音速流動,氣流參數(shù)向多方向傳播;

M=1,v=c

臨界流動,向下游傳播?!?-3氣體一元恒定流動的連續(xù)性方程一、連續(xù)性微分方程1、(形式一)①2、(形式二)②二、氣流速度與斷面的關(guān)系(1)亞音速流動M<1,v<c,dv與dA正負(fù)號相反。

A↑,v↓;A

,v↑

(流速隨斷面的變化規(guī)律與不可壓縮流體相同)(流速隨斷面的增大而減慢,隨斷面的減小而加快)。(2)超音速流動M>1,v>c,dv與dA正負(fù)號相同。

A↑,v↑↓;A

↓,v↓(3)任何情況下,p、T、ρ的變化與速度的變化相反。參見表9-1解釋速度與斷面的關(guān)系

v增加快,ρ減小慢。v1<v2,ρ1v1<ρ2v2,根據(jù)連續(xù)性方程A1>A2,反之亦然。v1v2v1<v2v1v2v1>v2M<1v1v2v1>v2v1v2v1<v2M>1②

v增加慢,ρ減小快。v1<v2,

ρ1>ρ2,

ρ1v1>ρ2v2,根據(jù)連續(xù)性方程A1<A2。(4)臨界流動M=1,v=c,氣流處于臨界狀態(tài)。臨界斷面參數(shù):

dA=0,極小或極大斷面;若v>c,擴(kuò)張管,則一直為超音速,不可能有最大臨界斷面;若v<c,擴(kuò)張管,A增大,v減小,流速仍為亞音速,達(dá)不到音速。所以,臨界斷面是變截面管道上的極限斷面,并且是最小斷面。

三、拉伐爾噴管從亞音速獲得超音速的噴管通過以上分析:初始斷面為亞音速的收縮氣流,不可能得到超音速流動,最多在出口達(dá)到音速。若使亞音速氣流流經(jīng)收縮管,并使其在最小斷面上達(dá)到音速,然后再進(jìn)入擴(kuò)張管,滿足氣流進(jìn)一步增速的需要,便可得到超音速氣流。此種形狀的噴管,稱為拉伐爾噴管。關(guān)于拉伐爾噴管,熱力學(xué)中有詳細(xì)討論,這里不再詳細(xì)講。peveAep0p0ρ0T0ρpTv0例1:用于測定空氣流量的文求里流量計(jì),其進(jìn)口直徑為400mm,喉管直徑為125mm,已知進(jìn)口處的壓強(qiáng)和溫度分別為138kN/㎡和170C,喉管處壓強(qiáng)為117kN/㎡,過程為等熵過程,K=1.4,R=287N.m/(㎏.K),該儀器的流量系數(shù)為0.96。試計(jì)算其流量,以㎏/s表示。(答案:2.864㎏/s)(答案:289.1K)例2:在管道中流動的空氣,其絕對壓強(qiáng)為137900N/㎡,馬赫數(shù)M=0.6,流量為0.227㎏/s,管道的斷面面積為6.45c㎡

,試求氣流的滯止溫度?!?-4實(shí)際氣體管路流動等截面管道的恒定氣流如高壓蒸氣管道、煤氣管道預(yù)備知識:氣體管路運(yùn)動微分方程沿程損失:討論:式中p、ρ、v均為待求變量。A、D為常數(shù),λ為氣流的沿程阻力系數(shù)。①D、管材一定,一定;②等截面,=常數(shù)。③隨溫度變化,等溫管路。=常數(shù),為常數(shù)。④絕熱管道,為變量,但在實(shí)用上,仍可作為常數(shù)考慮。λλ可見,可壓縮氣體在管道中輸送的計(jì)算,實(shí)質(zhì)上通過對微分方程進(jìn)行積分,推求各氣流參數(shù)的沿程變化規(guī)律。式中后兩項(xiàng)分別為v及L的獨(dú)立變量函數(shù),前兩項(xiàng)涉及、p兩個變量,為了能進(jìn)行積分運(yùn)算,現(xiàn)就具體流動條件找出兩者的相互關(guān)系。一、等溫管路等溫流動,管內(nèi)氣體與外界進(jìn)行充分的熱交換,T與周圍環(huán)境同,這種流動按等溫過程來處理。dl1122v1p1vpv2p2l1、基本公式根據(jù):運(yùn)動微分方程,等溫氣體狀態(tài)方程,連續(xù)性方程。得到(1)壓強(qiáng)公式①

λ方法:在長為l的兩斷面上積分,(為常數(shù)),并忽略項(xiàng)

(因?yàn)?、等溫管流特征根據(jù):氣體管路運(yùn)動微分方程(9-4-14)完全氣體狀態(tài)方程微分形式P263(a)連續(xù)性微分方程P263(b)

音速公式

(a)、(b)、(c)代入(9-4-14),得

(2)質(zhì)量流量G討論:(1)l增加,摩阻增加若kM2<1,v沿程增加,p、ρ減??;若kM2>1,v沿程減小,p、ρ增加。

(2)管路出口斷面(3)時,求得的管長為等溫管流的極限管長lmax。注:進(jìn)行等溫管流計(jì)算時,一定要校核,若出口斷面上,G只能按計(jì)算。例:1、P264(9-4)

2、已知某輸氣管道長l=90km,管徑d=300mm,起始斷面壓強(qiáng)p1=50個大氣壓,管道末端壓強(qiáng)p2=25個大氣壓,管內(nèi)溫度t=15oc,氣體常數(shù)R=343J/kg.K,絕熱指數(shù)k=1.37,沿程阻力系數(shù)λ=0.014,求通過的質(zhì)量流量G。解:校核:二、絕熱管流

在實(shí)際氣體管道中,當(dāng)管道絕熱良好,或因管道較短,管內(nèi)氣體與周圍環(huán)境基本上沒有熱交換,這類管道可作為絕熱過程來考慮。1、基本公式根據(jù):運(yùn)動微分方程,氣體絕熱狀態(tài)方程,連續(xù)性方程。方法:對長度為l的1-2兩斷面進(jìn)行積分其中λ仍按不可壓縮流體的近似,用等熵絕熱過程方程式代替有摩阻作用的非等熵絕熱過程中的ρ

,忽略積分后的項(xiàng)。(1)壓強(qiáng)(2)質(zhì)量流量①l增加,摩阻增加(變化率隨摩阻的增加而增加)

②管路出口斷面③出口M=1時求得的管長為絕熱管流的最大管長(一般上游或進(jìn)口M<1)2、絕熱管流特征類似于等溫管流的討論得出:例題:例9-5[P267]空

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論