![二次函數(shù)與實際問題(3)鄢志堅_第1頁](http://file4.renrendoc.com/view/b3d448b3cb64da2675d0f4c49d7c95bc/b3d448b3cb64da2675d0f4c49d7c95bc1.gif)
![二次函數(shù)與實際問題(3)鄢志堅_第2頁](http://file4.renrendoc.com/view/b3d448b3cb64da2675d0f4c49d7c95bc/b3d448b3cb64da2675d0f4c49d7c95bc2.gif)
![二次函數(shù)與實際問題(3)鄢志堅_第3頁](http://file4.renrendoc.com/view/b3d448b3cb64da2675d0f4c49d7c95bc/b3d448b3cb64da2675d0f4c49d7c95bc3.gif)
![二次函數(shù)與實際問題(3)鄢志堅_第4頁](http://file4.renrendoc.com/view/b3d448b3cb64da2675d0f4c49d7c95bc/b3d448b3cb64da2675d0f4c49d7c95bc4.gif)
![二次函數(shù)與實際問題(3)鄢志堅_第5頁](http://file4.renrendoc.com/view/b3d448b3cb64da2675d0f4c49d7c95bc/b3d448b3cb64da2675d0f4c49d7c95bc5.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
美麗的豐城五中實際問題與二次函數(shù)
面積問題最值理論二次函數(shù)最值的理論1.已知二次函數(shù)y=x2-2x-3x取何值時,y有最小值,最小值是多少?
由拋物線的頂點坐標(biāo)你是如何理解最大值與最小值的?最值理論例題與練習(xí)3.求函數(shù)y=(m+1)x2-2(m+1)x-m的最值。其中m為常數(shù)且m≠-1。2.二次函數(shù)y=(k-1)x2+(k-7)x+k+2。k為何值時,函數(shù)的最大值為3?最值理論最值的討論最值理論1.某工廠為了存放材料,需要圍一個周長160米的矩形場地,問矩形的長和寬各取多少米,才能使存放場地的面積最大。2.窗的形狀是矩形上面加一個半圓。窗的周長等于6cm,要使窗能透過最多的光線,它的尺寸應(yīng)該如何設(shè)計?BCDAO(一)面積問題3.用一塊寬為1.2m的長方形鐵板彎起兩邊做一個水槽,水槽的橫斷面為底角120o的等腰梯形。要使水槽的橫斷面積最大,它的側(cè)面AB應(yīng)該是多長?AD120oBC(一)面積問題4.如下圖,有一個長為24米的籬笆,一面利用墻(墻的最大長度a為10米)圍成中間隔有一道籬笆的長方形花圃.設(shè)花圃的寬AB為x米,面積為S米2.(1)求S與x的函數(shù)關(guān)系式;(2)如果要圍成面積為45米2的花圃,AB的長為多少米?(3)能圍成面積比45米2更大的花圃嗎?請說明理由.(一)面積問題實際問題與二次函數(shù)
(二)圖形問題(一)面積問題最值理論(二)圖形問題1在矩形ABCD中,AB=6cm,BC=12cm,點P從點A出發(fā),沿AB邊向點B以1cm/秒的速度移動,同時,點Q從點B出發(fā)沿BC邊向點C以2cm/秒的速度移動。如果P、Q兩點在分別到達(dá)B、C兩點后就停止移動,回答下列問題:(1)運動開始后第幾秒時,
△PBQ的面積等于8cm2(2)設(shè)運動開始后第t秒時,
五邊形APQCD的面積為Scm2,
寫出S與t的函數(shù)關(guān)系式,
并指出自變量t的取值范圍;t為何值時S最?。壳蟪鯯的最小值。
QPCBAD2.在△ABC中,BC=2,BC邊上的高AD=1,P是BC上任一點,PE∥AB交AC于E,PF∥AC交AB于F。設(shè)BP=x,將S△PEF用x表示;當(dāng)P在BC邊上什么位置時,S值最大。DFEPCBA(二)圖形問題實際問題與二次函數(shù)
(三)銷售問題(二)圖形問題(一)面積問題最值理論例:某商品現(xiàn)在的售價為每件60元,每星期可賣出300件,市場調(diào)查反映:每漲價1元,每星期少賣出10件;每降價1元,每星期可多賣出18件,已知商品的進價為每件40元,如何定價才能使利潤最大?請大家?guī)е韵聨讉€問題讀題(1)題目中有幾種調(diào)整價格的方法?
(2)題目涉及到哪些變量?哪一個量是自變量?哪些量隨之發(fā)生了變化?(三)銷售問題分析:調(diào)整價格包括漲價和降價兩種情況先來看漲價的情況:⑴設(shè)每件漲價x元,則每星期售出商品的利潤y也隨之變化,我們先來確定y與x的函數(shù)關(guān)系式。漲價x元時則每星期少賣
件,實際賣出
件,銷額為
元,買進商品需付
元因此,所得利潤為
元10x(300-10x)(60+x)(300-10x)40(300-10x)y=(60+x)(300-10x)-40(300-10x)即(0≤X≤30)(三)銷售問題(0≤X≤30)可以看出,這個函數(shù)的圖像是一條拋物線的一部分,這條拋物線的頂點是函數(shù)圖像的最高點,也就是說當(dāng)x取頂點坐標(biāo)的橫坐標(biāo)時,這個函數(shù)有最大值。由公式可以求出頂點的橫坐標(biāo).所以,當(dāng)定價為65元時,利潤最大,最大利潤為6250元(三)銷售問題在降價的情況下,最大利潤是多少?請你參考(1)的過程得出答案。解:設(shè)降價x元時利潤最大,則每星期可多賣18x件,實際賣出(300+18x)件,銷售額為(60-x)(300+18x)元,買進商品需付40(300-10x)元,因此,得利潤答:定價為元時,利潤最大,最大利潤為6050元(0≤x≤20)由(1)(2)的討論及現(xiàn)在的銷售情況,你知道應(yīng)該如何定價能使利潤最大了嗎?(三)銷售問題1.某商場銷售一批名牌襯衫,平均每天可售出20件,每件盈利40元,為了擴大銷售,增加盈利,盡快減少庫存,商場決定采取適當(dāng)?shù)慕祪r措施。經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價1元,商場平均每天可多售出2件。(1)若商場平均每天要盈利1200元,每件襯衫應(yīng)降價多少元?(2)每件襯衫降價多少元時,商場平均每天盈利最多?(三)銷售問題隨堂練習(xí)有一種螃蟹,從海上捕獲后不放養(yǎng)最多只能存活兩天,如果放養(yǎng)在塘內(nèi),可以延長存活時間,但每天也有一定數(shù)量的蟹死去.假設(shè)放養(yǎng)期內(nèi)蟹的個體重量基本保持不變.現(xiàn)有一經(jīng)銷商,按市場價收購了這種活蟹1000千克放養(yǎng)在塘內(nèi),此時的市場價為每千克30元.據(jù)測算,此后每千克活蟹的市場價每天可上升1元,但是,放養(yǎng)一天需各種費用支出400元,且平均每天還有10千克蟹死去,假定死蟹均于當(dāng)天全部售出,售價都是每千克20元。(1)設(shè)x天后每千克活蟹的市場價為P元,寫出P關(guān)于x的函數(shù)關(guān)系式;(2)如果放養(yǎng)x天后將活蟹一次性出售,并記1000千克蟹的銷售總額為Q元,寫出Q與x的函數(shù)關(guān)系式;(3)該經(jīng)銷商將這批蟹放養(yǎng)多少天后出售,可獲最大利潤(利潤=銷售總額-收購成本-費用)?最大利潤是多少?走進中考2.某商場以每件42元的價錢購進一種服裝,根據(jù)試銷得知這種服裝每天的銷售量t(件)與每件的銷售價x(元/件)可看成是一次函數(shù)關(guān)系:
t=-3x+204。(1).寫出商場賣這種服裝每天銷售利潤
y(元)與每件的銷售價x(元)間的函數(shù)關(guān)系式;(2).通過對所得函數(shù)關(guān)系式進行配方,指出商場要想每天獲得最大的銷售利潤,每件的銷售價定為多少最為合適?最大利潤為多少?(三)銷售問題隨堂練習(xí)二次函數(shù)的應(yīng)用專題四:二次函數(shù)綜合應(yīng)用題某化工材料經(jīng)銷公司購進了一種化工原料共7000千克,購進價格為每千克30元。物價部門規(guī)定其銷售單價不得高于每千克70元,也不得低于30元。市場調(diào)查發(fā)現(xiàn):單價定為70元時,日均銷售60千克;單價每降低1元,日均多售出2千克。在銷售過程中,每天還要支出其它費用500元(天數(shù)不足一天時,按整天計算)。設(shè)銷售單價為x元,日均獲利為y元。求y關(guān)于x的函數(shù)關(guān)系式,并注明x的取值范圍。將上面所求出的函數(shù)配方成頂點式,寫出頂點坐標(biāo)。并指出單價定為多少元時日均獲利最多,是多少?某跳水運動員進行10米跳臺跳水訓(xùn)練時,身體(看成一點)在空中的運動路線是如圖所示坐標(biāo)系下經(jīng)過原點O的一條拋物線(圖中標(biāo)出的數(shù)據(jù)為已知條件)。在跳某個規(guī)定動作時,正常情況下,該運動 員在空中的最高處距水面32/3米, 入水處距池邊的距離為4米,同 時,運動員在距水面高度為5米 以前,必須完成規(guī)定的翻騰動作, 并調(diào)整好入水姿勢,否則就會出 現(xiàn)失誤。(1)求這條拋物線的解 析式;(2)在某次試跳中,測 得運動員在空中的運動路線是(1) 中的拋物線,且運動員在空中調(diào) 整好入水姿勢時,距池邊的水平 距離為18/5米,問此次跳水會不 會失誤?并通過計算說明理由。
某新建商場設(shè)有百貨部、服裝部和家電部三個經(jīng)營部,共有190名售貨員,計劃全商場日營業(yè)額(指每天賣出商品所收到的總金額)為60萬元,由于營業(yè)性質(zhì)不同,分配到三個部的售貨員的人數(shù)也就不等,根據(jù)經(jīng)驗,各類商品每1萬元營業(yè)額所需售貨員人數(shù)如表(1),每1萬元營業(yè)額所得利潤情況如表(2)。商場將計劃日營業(yè)額分配給三個經(jīng)營部,設(shè)分配給百貨部,服裝部和家電部的營業(yè)額分別為x,y和z(單位:萬元,x、y、z都是整數(shù))。(1)請用含x的代數(shù)式分別表示y和z;(2)若商場預(yù)計每日的總利潤為C(萬元),且C滿足19≤C≤19.7。問商場應(yīng)如何分配營業(yè)額給三個經(jīng)營部?各應(yīng)分別安
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年海南從業(yè)資格證貨運題庫答案
- 電力損耗管理合同(2篇)
- 晉教版地理七年級下冊9.5《極地地區(qū)──冰封雪裹的世界》聽課評課記錄
- 小學(xué)五年級下冊數(shù)學(xué)《同分母分?jǐn)?shù)加減法》聽評課記錄
- 2024年春五年級語文下冊第一單元3冬不拉課文原文素材語文S版
- 2024-2025學(xué)年高中政治課時分層作業(yè)19培育和踐行社會主義核心價值觀含解析新人教版必修3
- 2024-2025學(xué)年新教材高中地理第一單元從宇宙看地球第一節(jié)地球的宇宙環(huán)境第1課時宇宙和太陽課后篇鞏固提升含解析魯教版必修第一冊
- 專業(yè)技術(shù)人員年終工作總結(jié)
- 初中歷史社團活動總結(jié)
- 教師戶外活動總結(jié)
- 全過程工程咨詢服務(wù)技術(shù)方案
- 小報:人工智能科技科學(xué)小報手抄報電子小報word小報
- GB/T 41509-2022綠色制造干式切削工藝性能評價規(guī)范
- 孫權(quán)勸學(xué)教案全國一等獎教學(xué)設(shè)計
- 企業(yè)生產(chǎn)現(xiàn)場6S管理知識培訓(xùn)課件
- 五年級下冊數(shù)學(xué)課件 第10課時 練習(xí)課 蘇教版(共11張PPT)
- 電梯口包邊施工方案正式
- 三年級道德與法治下冊我是獨特的
- 土木工程畢業(yè)設(shè)計(論文)-五層宿舍樓建筑結(jié)構(gòu)設(shè)計
- 青年卒中 幻燈
- 典型倒閘操作票
評論
0/150
提交評論