高中數(shù)學(xué)蘇教版第一章立體幾何初步點(diǎn)線面之間的位置關(guān)系 優(yōu)質(zhì)課獎(jiǎng)_第1頁
高中數(shù)學(xué)蘇教版第一章立體幾何初步點(diǎn)線面之間的位置關(guān)系 優(yōu)質(zhì)課獎(jiǎng)_第2頁
高中數(shù)學(xué)蘇教版第一章立體幾何初步點(diǎn)線面之間的位置關(guān)系 優(yōu)質(zhì)課獎(jiǎng)_第3頁
高中數(shù)學(xué)蘇教版第一章立體幾何初步點(diǎn)線面之間的位置關(guān)系 優(yōu)質(zhì)課獎(jiǎng)_第4頁
高中數(shù)學(xué)蘇教版第一章立體幾何初步點(diǎn)線面之間的位置關(guān)系 優(yōu)質(zhì)課獎(jiǎng)_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

課題:直線與平面垂直

教材:蘇教版普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書

數(shù)學(xué)必修2

【教學(xué)目標(biāo)】

知識(shí)與技能:

(1)通過讓學(xué)生對(duì)實(shí)例以及圖片的觀察,抽象概括出直線與平面的定義,并能理解直線與平面垂直的定義。

(2)讓學(xué)生通過自己動(dòng)手折紙感受直線與平面垂直,歸納出線面垂直的判定定理。并學(xué)會(huì)用反證法證明直線與平面垂直的性質(zhì)定理。

(3)熟悉自然語言,圖形語言和符號(hào)語言之間的轉(zhuǎn)化,能夠初步運(yùn)用線面垂直的定義和判定、性質(zhì)定理證明簡單命題。

過程與方法:

(1)引導(dǎo)學(xué)生觀察和聯(lián)想實(shí)際生活情境,通過直觀感知,操作確認(rèn)的方法去探究空間中線面垂直的位置關(guān)系,概括出線面垂直的定義、判定定理和性質(zhì)定理。

(2)感悟和體驗(yàn)“空間問題轉(zhuǎn)化為平面問題”、“線面垂直轉(zhuǎn)化為線線垂直”的轉(zhuǎn)化思想。

情感、態(tài)度與價(jià)值觀:

通過學(xué)習(xí),使學(xué)生在認(rèn)識(shí)到數(shù)學(xué)源于生活,

鼓勵(lì)學(xué)生自己動(dòng)手操作,讓學(xué)生親身經(jīng)歷探索的過程,提高數(shù)學(xué)學(xué)習(xí)的興趣,

在實(shí)踐中提高自己的思辨能力,使學(xué)生更加熱愛數(shù)學(xué),熱愛生活。

【教學(xué)重點(diǎn)及難點(diǎn)】

教學(xué)重點(diǎn):直線與平面垂直的定義、判定定理的初步應(yīng)用以及性質(zhì)定理的理解.

教學(xué)難點(diǎn):探究、歸納直線與平面垂直的定義,線面垂直性質(zhì)定理的證明。

【教學(xué)方法】

教法:啟發(fā)與探究相結(jié)合

學(xué)法:合作交流、動(dòng)手試驗(yàn)、歸納生成、抽象概括、反思總結(jié)。

【教具準(zhǔn)備】

電腦、多媒體課件、課本

【教學(xué)過程】

一、創(chuàng)設(shè)情景,構(gòu)建直線與平面垂直定義

1、舊知回顧——引出問題

問題1:

直線與平面有幾種位置關(guān)系?

問題2:

直線與平面有哪幾種位置關(guān)系?

設(shè)計(jì)意圖:通過對(duì)已學(xué)知識(shí)的回顧,觸發(fā)對(duì)新知識(shí)的研究,有利于對(duì)新內(nèi)容形成較強(qiáng)的知識(shí)網(wǎng)絡(luò)。

2、聯(lián)系生活——感知概念

通過一些熟悉的模型①東方明珠②旗桿③虎丘塔讓學(xué)生尋找具體的線面垂直關(guān)系。進(jìn)而提出問題如何確定線面垂直關(guān)系呢?

設(shè)計(jì)意圖:通過學(xué)生對(duì)幾個(gè)實(shí)際生活中的建筑物的觀察,形成強(qiáng)烈的視覺對(duì)比沖擊,抽象出直線與平面垂直的幾何圖形,讓學(xué)生直觀感受什么是

“線面垂直”。

使學(xué)生頭腦中產(chǎn)生直線與平面垂直的初步印象,這樣既引出本節(jié)課的課題,也能夠吸引了學(xué)生的注意力,激發(fā)了學(xué)生的好奇心,使其主動(dòng)參與到本節(jié)課的學(xué)習(xí)中來。

3.數(shù)學(xué)模型——形成概念

播放“圓錐體的形成”的動(dòng)畫,引導(dǎo)學(xué)生觀察圓錐體的形成過程。讓學(xué)生直觀感知圓錐體的旋轉(zhuǎn)軸與圓錐底面的垂直關(guān)系。

問題1:

與底面內(nèi)

的任意一條半徑垂直嗎?

問題2:

與底面內(nèi)

的任意一條半徑都是垂直的。

問題3:

與底面內(nèi)

的任意一條直線都是垂直的嗎?(師畫一條過點(diǎn)

的直線)

設(shè)計(jì)意圖:利用數(shù)學(xué)中學(xué)生熟悉的模型,提高學(xué)生抽象概括的能力,讓學(xué)生感悟:一條直線與一個(gè)平面內(nèi)垂直必須具備什么樣的條件?讓學(xué)生感知直線與平面垂直的本質(zhì)屬性,體會(huì)到定義的合理性。

4.師生互動(dòng)——深化概念

教師展示兩個(gè)問題:

(1)如果一條直線垂直于一個(gè)平面內(nèi)的無數(shù)條直線,那么這條直線就與這個(gè)平面垂直。

(2)如果一條直線垂直于一個(gè)平面,那么這條直線就垂直于平面內(nèi)的任意一條直線。

描述:直線與平面垂直的定義(文字語言、圖形語言、符號(hào)語言),并強(qiáng)調(diào)定義具有“雙重功效性”。線線垂直

線面垂直

設(shè)計(jì)意圖:通過對(duì)兩個(gè)問題的討論辨析,讓學(xué)生加深對(duì)概念的理解,并讓學(xué)生體會(huì)到通過定義可以實(shí)現(xiàn)“線線垂直”與“線面垂直”的相互轉(zhuǎn)化。

二、通過試驗(yàn),探究直線與平面垂直的判定定理

1.情景問題——引發(fā)思考

播放圖片,檢驗(yàn)“旗桿與地面是否垂直”的問題來激發(fā)學(xué)生尋求判定線面垂直的新方法。

2.動(dòng)手操作——直觀感知

準(zhǔn)備一個(gè)三角形紙片,三個(gè)頂點(diǎn)分別記作

,

.如圖,過△

的頂點(diǎn)

疊紙片,得到折痕

,將折疊后的紙片打開豎起放置在桌面上。(使

、

邊與桌面接觸)

通過折紙讓學(xué)生感知怎樣才能使這條折痕垂直于桌面呢?

3.思辨論證——?dú)w納判定

描述:直線與平面垂直的判定定理(文字語言、圖形語言、符號(hào)語言)

設(shè)計(jì)意圖:通過“情景鏈”讓深?yuàn)W的理論和方法在情境中被學(xué)生同化并接受。課堂中采用實(shí)例、學(xué)生自己動(dòng)手、驗(yàn)證、抽象概括出直線與平面垂直的判定定理。這種處理方式,使教學(xué)過程更加流暢,學(xué)生更容易接受。

三、數(shù)學(xué)應(yīng)用,加深對(duì)線面垂直的理解

例題1:如果兩條平行線中的一條垂直于一個(gè)平面,那么另一條也垂直于這個(gè)平面。

方案一:可以利用直線與平面垂直的定義,在平面里任意畫一條直線

方案二:可以利用直線與平面垂直的判定定理,在平面里任意畫兩條相交直線

設(shè)計(jì)意圖:讓學(xué)生感受到利用線面垂直的定義及判定定理在判斷線面垂直關(guān)系方面的方法作用,讓學(xué)生感受如果證明線面垂直,螺旋式再深化對(duì)線面垂直的的認(rèn)識(shí).

四、嘗試探索,歸納線面垂直的性質(zhì)

1.由例1出發(fā),轉(zhuǎn)換條件和結(jié)論,得到新命題并嘗試證明。

已知:

,則

.這個(gè)命題還成立嗎?

設(shè)計(jì)意圖:通過師生共同證明,化解學(xué)生理解上的難點(diǎn)。

2.運(yùn)用反證法證明直線與平面垂直的性質(zhì)定理

描述:直線與平面垂直的性質(zhì)定理(文字語言、圖形語言、符號(hào)語言、應(yīng)用)

設(shè)計(jì)意圖:讓學(xué)生感知例1在這里起到的作用:如果一條直線垂直于桌面,那么與它平行的直線也垂直于桌面,也就是說。平移不改變它與平面之間的垂直關(guān)系,從而可以把直線

平移到點(diǎn)

。在定理的證明的過程中讓學(xué)生自己去嘗試證明的方法,在實(shí)踐中深刻領(lǐng)悟到“正難則反”的思想。

五、感悟嘗試,解決情景中的問題

問題:將一根高8米的旗桿PO豎立在操場上用于懸掛國旗,它的頂端P

懸掛一條長10米的繩子.現(xiàn)有一條皮尺,請(qǐng)你檢驗(yàn)一下旗桿是否與地面垂直?

設(shè)計(jì)意圖:在學(xué)生對(duì)線面垂直關(guān)系有了深入的理解后,

回顧情景中提出的問題,把線面垂直問題的解題實(shí)質(zhì)體現(xiàn)

得漓淋盡致,同時(shí)也增加了趣味性,同時(shí)也說明了數(shù)學(xué)來源于生活。

六、總結(jié)反思,使認(rèn)識(shí)得到沉淀

問題1:本節(jié)課學(xué)習(xí)探究了哪些基本知識(shí)點(diǎn)?

問題2:本節(jié)課涉及到哪些數(shù)學(xué)思想和方法?

七、布置作業(yè),使知識(shí)得到鞏固

八、板書設(shè)計(jì)

直線與平面垂直

一、定義:

例1

已知:

例2、圖形

性質(zhì)定理

思想方法

符號(hào)語言

求證:

證明過程

證明:

圖形語言

證明:

二、判定定理

符號(hào)語言

教學(xué)設(shè)計(jì)說明

在本節(jié)課之前學(xué)生已學(xué)習(xí)了空間點(diǎn)、直線、平面之間的位置關(guān)系和直線、平面平行的判定及其性質(zhì),具備了學(xué)習(xí)本節(jié)課所需的知識(shí).學(xué)生在學(xué)習(xí)了直線與平面的平行后已經(jīng)具備了“通過觀察、操作等數(shù)學(xué)活動(dòng)抽象概括出數(shù)學(xué)結(jié)論”的基礎(chǔ),對(duì)空間概念建立有一定基礎(chǔ)。對(duì)于本節(jié)課的學(xué)習(xí)可以采用類比的思想,把知識(shí)加以遷移。

本節(jié)課采用創(chuàng)設(shè)情境—學(xué)生活動(dòng)—建構(gòu)教學(xué)—數(shù)學(xué)應(yīng)用—反思教學(xué)這條主線安排教學(xué),通過實(shí)例引導(dǎo)學(xué)生認(rèn)識(shí)線面“垂直”,引出課題.類比研究線面平行的方法,通過圓錐的動(dòng)畫演示來使學(xué)生理性認(rèn)識(shí)線面垂直與線線垂直的關(guān)系,讓同學(xué)們直觀感知,一條線要垂直于一個(gè)平面必須具備什么條件。進(jìn)而引導(dǎo)學(xué)生歸納出直線與平面垂直的定義。

如何檢驗(yàn)國旗的旗桿是否垂直地面,引發(fā)學(xué)生思考,激發(fā)他們學(xué)習(xí)的興趣,從而引出直線與平面垂直的判定定理,這樣很自然的從定義過渡到判定定理,對(duì)于教材例1的處理,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論