




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
5.1測(cè)量誤差概述一、誤差來(lái)源測(cè)量誤差來(lái)源于以下三個(gè)方面:儀器測(cè)量誤差——因觀(guān)測(cè)條件限制不可避免地產(chǎn)生的測(cè)量偏差。
儀器制造上所能達(dá)到的精度具有一定的限度。儀器構(gòu)造不可能十分完善。觀(guān)測(cè)者觀(guān)測(cè)者感官的鑒別力具有一定的限度。觀(guān)測(cè)者的熟練程度和認(rèn)真程度。外界條件:大氣條件、光線(xiàn)及時(shí)間。
第5章測(cè)量誤差的基本知識(shí)
我們把產(chǎn)生測(cè)量誤差的這三方面因素總稱(chēng)為觀(guān)測(cè)條件。觀(guān)測(cè)條件決定觀(guān)測(cè)質(zhì)量。若觀(guān)測(cè)條件相對(duì)較好,產(chǎn)生的測(cè)量誤差就相對(duì)較小。二、誤差分類(lèi)1.系統(tǒng)誤差系統(tǒng)誤差——在相同的觀(guān)測(cè)條件下對(duì)某量作一系列的觀(guān)測(cè),如果產(chǎn)生的誤差的符號(hào)及大小表現(xiàn)出一致的傾向,即按一定的規(guī)律變化或保持為常數(shù)。例1:量距某鋼尺的尺長(zhǎng)方程式對(duì)已知距離進(jìn)行丈量,結(jié)果如下:例2:視準(zhǔn)軸不平行于水準(zhǔn)管軸對(duì)水準(zhǔn)尺讀數(shù)的影響系統(tǒng)誤差的特點(diǎn):具有累計(jì)性,對(duì)測(cè)量結(jié)果影響大。
具有規(guī)律性,其影響一般可消除。消除方法:
1)用計(jì)算方法,如對(duì)丈量結(jié)果加改正數(shù)。
2)采取適當(dāng)?shù)挠^(guān)測(cè)方法,如水準(zhǔn)測(cè)量要求前后視距離相等。2.偶然誤差偶然誤差——在相同的觀(guān)測(cè)條件下對(duì)某量作一系列的觀(guān)測(cè),如果產(chǎn)生的誤差的符號(hào)及大小都沒(méi)有表現(xiàn)出一致的傾向,即表面上沒(méi)有任何規(guī)律性。例:水準(zhǔn)尺讀數(shù)誤差、角度測(cè)量中的瞄準(zhǔn)誤差偶然誤差的產(chǎn)生總是有原因的,是多方面因素的綜合影響,當(dāng)無(wú)一因素占主導(dǎo)地位時(shí),誤差呈隨機(jī)性。但對(duì)大量偶然誤差而言,具有統(tǒng)計(jì)規(guī)律。儀器誤差多為系統(tǒng)誤差觀(guān)測(cè)誤差是偶然誤差誤差判斷:
在一般情況下,測(cè)量誤差同時(shí)包含系統(tǒng)誤差和偶然誤差。因系統(tǒng)誤差可以消除或大大減弱,當(dāng)系統(tǒng)誤差不顯著時(shí),可認(rèn)為測(cè)量誤差僅含有偶然誤差。偶然誤差是不能消除的,只能設(shè)法減弱其影響。本章討論的內(nèi)容是如何估計(jì)偶然誤差的影響。
(一是對(duì)被觀(guān)測(cè)量進(jìn)行精度評(píng)定、二是求出被觀(guān)測(cè)量的最可靠值.)注:測(cè)量中是不容許發(fā)生錯(cuò)誤的,錯(cuò)誤不屬于測(cè)量誤差范圍。5.2偶然誤差的特性實(shí)例分析:β1β3β2
由于測(cè)量誤差的存在,使得三角形內(nèi)角的觀(guān)測(cè)值不等于理論值,而存在真誤差Δ
獨(dú)立觀(guān)測(cè)了96個(gè)三角形,將產(chǎn)生的真誤差按其正負(fù)號(hào)和大小并以0.5"為誤差區(qū)間排列于下表。誤差區(qū)間
dΔ"
Δ為正值
Δ為負(fù)值個(gè)數(shù)
v頻率
v/n頻率/組距個(gè)數(shù)v頻率v/n頻率/組距0.0~0.5190.1980.396200.2080.4160.5~1.0130.1350.270120.1250.2501.0~1.580.0830.16690.0940.1881.5~2.050.0520.10440.0420.0842.0~2.520.0210.04220.0210.0422.5~3.010.0100.02010.0100.0203.0以上000000
Σ4848
偶然誤差的特性:1.在一定的觀(guān)測(cè)條件下,偶然誤差的絕對(duì)值不會(huì)超過(guò)一定的限值;2.絕對(duì)值較小的誤差比絕對(duì)值較大的誤差出現(xiàn)的可能性大;3.絕對(duì)值相等的正、負(fù)誤差,其出現(xiàn)的可能性相等;4.偶然誤差的算術(shù)平均值,隨著觀(guān)測(cè)次數(shù)的無(wú)限增大而趨近于零。即左式中上式是由偶然誤差的第3特性導(dǎo)出。誤差分布曲線(xiàn)
如果觀(guān)測(cè)個(gè)數(shù)增大,誤差出現(xiàn)在各區(qū)間的頻率就趨向一個(gè)穩(wěn)定值。也就是說(shuō),在一定的觀(guān)測(cè)條件下,一組偶然誤差對(duì)應(yīng)著一種確定不變的誤差分布。誤差分布曲線(xiàn)函數(shù)式為式中稱(chēng)為方差,定義為01.02.03.0
-3.0-2.0-1.0
表中統(tǒng)計(jì)結(jié)果用頻率直方圖表示長(zhǎng)方條面積代表誤差出現(xiàn)在該區(qū)間的頻率5.3衡量精度的指標(biāo)精度——誤差分布的密集或離散的程度。Ⅰ組觀(guān)測(cè)值精度高于Ⅱ組精度高說(shuō)明觀(guān)測(cè)條件好一、中誤差設(shè)對(duì)某一未知量進(jìn)行了n次等精度觀(guān)測(cè),其觀(guān)測(cè)值為,設(shè)該未知量的真值為X,相應(yīng)的真誤差為,則定義該組觀(guān)測(cè)值的中誤差m的平方為式中ΔⅠⅡ0在實(shí)際測(cè)量工作中,觀(guān)測(cè)次數(shù)n有限,只能計(jì)算出觀(guān)測(cè)值中誤差的估值測(cè)量上通常將觀(guān)測(cè)值中誤差的估值就看作為觀(guān)測(cè)值的中誤差即ΔⅠⅡ誤差分布曲線(xiàn)函數(shù)式可表示為設(shè)Ⅰ組觀(guān)測(cè)值的中誤差為
Ⅱ組觀(guān)測(cè)值的中誤差為即m值小,觀(guān)測(cè)精度高。二、相對(duì)誤差相對(duì)誤差——中誤差或真誤差的絕對(duì)值與相應(yīng)觀(guān)測(cè)值之比。距離丈量的相對(duì)誤差例:注意:相對(duì)誤差是一個(gè)無(wú)量綱的數(shù)值。
相對(duì)誤差這一指標(biāo)僅用來(lái)衡量距離測(cè)量精度。三、容許誤差誤差出現(xiàn)的概率Δ
-3m-2m-mm2m3m測(cè)量上,一般取2倍中誤差作為誤差的容許值,即例:水平角測(cè)回互差
豎直角指標(biāo)差的變動(dòng)范圍錯(cuò)誤誤差四、用觀(guān)測(cè)值的改正數(shù)計(jì)算中誤差(5.5節(jié))設(shè)某量真值為X;等精度觀(guān)測(cè)值為1.觀(guān)測(cè)值的算術(shù)平均值證明:當(dāng)將上組式取和,再除以n,得根據(jù)偶然誤差的第四特性所以可以認(rèn)為算術(shù)平均值是最接近真值的,也稱(chēng)為最可靠值。2.觀(guān)測(cè)值的改正數(shù)——觀(guān)測(cè)值的改正數(shù)3.觀(guān)測(cè)值的中誤差因?yàn)橛幸陨蟽墒较嗉?,得代入上式并移?xiàng)上式兩邊平方求和式中上式為而取上式平方因?yàn)榕既徽`差,根據(jù)偶然誤差的第四特性,有當(dāng)n為有限值時(shí),第二項(xiàng)的值遠(yuǎn)比第一項(xiàng)的值要小,可忽略不計(jì)。因此有根據(jù)中誤差的定義,前式寫(xiě)為上式變換成則利用觀(guān)測(cè)值的改正數(shù)計(jì)算觀(guān)測(cè)值的中誤差的公式為注意:只有當(dāng)n較大時(shí),計(jì)算中誤差才有意義。4.算術(shù)平均值的中誤差例1:對(duì)某角觀(guān)測(cè)6個(gè)測(cè)回,求觀(guān)測(cè)值的中誤差和算術(shù)平均值的中誤差。觀(guān)測(cè)值vvv計(jì)算1136°48'30"-4
162
4826
0
03
4828
-2
44
4824
+2
45
4825
+1
16
4823
+3
9X=136°48'26"[v]=0[vv]=34
提高算術(shù)平均值的精度的兩個(gè)途徑:1)通過(guò)改善觀(guān)測(cè)條件,使m值減小。2)增加觀(guān)測(cè)次數(shù)。例2:對(duì)某直線(xiàn)丈量了4次,丈量結(jié)果為246.535m、246.548m、246.521m、246.529m。求其算術(shù)平均值、算術(shù)平均值的中誤差及相對(duì)誤差。5.4誤差傳播定律
某些未知量,例如點(diǎn)的坐標(biāo)X、Y,高程H等都是直接觀(guān)測(cè)量的函數(shù)。函數(shù)的中誤差與直接觀(guān)測(cè)量的中誤差之間存在一定的函數(shù)關(guān)系,闡述這種函數(shù)關(guān)系的定律被稱(chēng)為誤差傳播定律。由于的存在,使函數(shù)Z亦產(chǎn)生相應(yīng)的真誤差。取上式全微分設(shè)有一般函數(shù)式中為可直接觀(guān)測(cè)的未知量,設(shè)的獨(dú)立觀(guān)測(cè)值為,其相應(yīng)的中誤差為、真誤差一、誤差傳播定律都很小,可用因此有設(shè)有將以上各式等號(hào)兩邊平方后再相加得上式兩端除以k,有根據(jù)偶然誤差的第四特性,有根據(jù)中誤差的定義,上式可寫(xiě)成或上式為一般函數(shù)的誤差傳播定律。式中例1:證明算術(shù)平均值的中誤差為算術(shù)平均值則因?yàn)榈染扔^(guān)測(cè)值,故有函數(shù)對(duì)各自變量的偏導(dǎo)數(shù)根據(jù)誤差傳播定律,有
例2:已知觀(guān)測(cè)值求上式全微分式中將全微分式轉(zhuǎn)換成中誤差誤差傳播定律應(yīng)用總結(jié):對(duì)于一般函數(shù)設(shè)的獨(dú)立觀(guān)測(cè)值為,其相應(yīng)的中誤差為式中取上式全微分轉(zhuǎn)換成中誤差平方的表達(dá)式二、應(yīng)用舉例水準(zhǔn)測(cè)量的精度(1)一個(gè)測(cè)站的高差中誤差單儀高法:
設(shè)h的中誤差為a、b的中誤差為雙儀高法:說(shuō)明:兩個(gè)等精度獨(dú)立觀(guān)測(cè)值之和或差的中誤差,等于觀(guān)測(cè)值中誤差的倍。
兩個(gè)等精度獨(dú)立觀(guān)測(cè)值的平均值的中誤差,等于觀(guān)測(cè)值中誤差的倍。(2)一個(gè)測(cè)段的高差中誤差A(yù)B一測(cè)回方向值設(shè):一測(cè)回方向值中誤差為水平角測(cè)量的精度DJ6級(jí)經(jīng)緯儀的一測(cè)回方向
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 老人中考語(yǔ)文作文
- 玻璃熔化工藝模擬與優(yōu)化考核試卷
- 什么中的身影初一語(yǔ)文作文
- 難忘的友誼初一語(yǔ)文作文
- 綠色初二語(yǔ)文作文
- 河南省洛陽(yáng)市新安縣2023-2024學(xué)年七年級(jí)下學(xué)期期末考試數(shù)學(xué)試卷(含答案)
- 磷肥生產(chǎn)設(shè)備結(jié)構(gòu)與原理考核卷考核試卷
- 玩具行業(yè)人才培養(yǎng)需求考核試卷
- 寧波九校高二上學(xué)期語(yǔ)文作文
- 烘爐設(shè)備維護(hù)與管理考核試卷
- 人教部編版七年級(jí)語(yǔ)文上冊(cè)《散步》示范課教學(xué)課件
- 《智慧旅游認(rèn)知與實(shí)踐》課件-第九章 智慧旅行社
- 傳承勞動(dòng)精神彰顯青春風(fēng)采發(fā)言稿
- 智能物流無(wú)人機(jī)配送行業(yè)發(fā)展建議
- 數(shù)學(xué)新課程標(biāo)準(zhǔn)解讀(2)聚焦核心素養(yǎng)關(guān)注終身發(fā)展課件
- 高標(biāo)準(zhǔn)農(nóng)田建設(shè)項(xiàng)目竣工驗(yàn)收第三方服務(wù)采購(gòu)項(xiàng)目
- AQ 2001-2018 煉鋼安全規(guī)程(正式版)
- 醫(yī)院護(hù)理培訓(xùn)課件:《安全注射》
- 2024年415全民國(guó)家安全教育日知識(shí)競(jìng)賽及答案
- 再生資源消防安全培訓(xùn)
- 高考地理二輪復(fù)習(xí)課件專(zhuān)題3S技術(shù)
評(píng)論
0/150
提交評(píng)論