2022-2023學(xué)年山東省禹城市中考數(shù)學(xué)押題卷含解析_第1頁(yè)
2022-2023學(xué)年山東省禹城市中考數(shù)學(xué)押題卷含解析_第2頁(yè)
2022-2023學(xué)年山東省禹城市中考數(shù)學(xué)押題卷含解析_第3頁(yè)
2022-2023學(xué)年山東省禹城市中考數(shù)學(xué)押題卷含解析_第4頁(yè)
2022-2023學(xué)年山東省禹城市中考數(shù)學(xué)押題卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年中考數(shù)學(xué)模擬試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.小軒從如圖所示的二次函數(shù)y=ax2+bx+c(a≠0)的圖象中,觀察得出了下面五條信息:①ab>0;②a+b+c<0;③b+2c>0;④a﹣2b+4c>0;⑤.你認(rèn)為其中正確信息的個(gè)數(shù)有A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)2.如圖,數(shù)軸上有A,B,C,D四個(gè)點(diǎn),其中表示互為相反數(shù)的點(diǎn)是A.點(diǎn)A和點(diǎn)C B.點(diǎn)B和點(diǎn)DC.點(diǎn)A和點(diǎn)D D.點(diǎn)B和點(diǎn)C3.若關(guān)于x的一元二次方程x2﹣2x+m=0沒有實(shí)數(shù)根,則實(shí)數(shù)m的取值是()A.m<1 B.m>﹣1 C.m>1 D.m<﹣14.如圖,點(diǎn)A、B、C是⊙O上的三點(diǎn),且四邊形ABCO是平行四邊形,OF⊥OC交圓O于點(diǎn)F,則∠BAF等于()A.12.5° B.15° C.20° D.22.5°5.如圖,已知BD與CE相交于點(diǎn)A,ED∥BC,AB=8,AC=12,AD=6,那么AE的長(zhǎng)等于()A.4 B.9 C.12 D.166.下列計(jì)算正確的是()A.a(chǎn)3?a3=a9B.(a+b)2=a2+b2C.a(chǎn)2÷a2=0D.(a2)3=a67.一次函數(shù)與反比例函數(shù)在同一個(gè)坐標(biāo)系中的圖象可能是()A. B. C. D.8.已知二次函數(shù)y=a(x﹣2)2+c,當(dāng)x=x1時(shí),函數(shù)值為y1;當(dāng)x=x2時(shí),函數(shù)值為y2,若|x1﹣2|>|x2﹣2|,則下列表達(dá)式正確的是()A.y1+y2>0 B.y1﹣y2>0 C.a(chǎn)(y1﹣y2)>0 D.a(chǎn)(y1+y2)>09.如圖,點(diǎn)O為平面直角坐標(biāo)系的原點(diǎn),點(diǎn)A在x軸上,△OAB是邊長(zhǎng)為4的等邊三角形,以O(shè)為旋轉(zhuǎn)中心,將△OAB按順時(shí)針?lè)较蛐D(zhuǎn)60°,得到△OA′B′,那么點(diǎn)A′的坐標(biāo)為()A.(2,2) B.(﹣2,4) C.(﹣2,2) D.(﹣2,2)10.在△ABC中,∠C=90°,sinA=,則tanB等于()A. B.C. D.二、填空題(共7小題,每小題3分,滿分21分)11.閱讀下面材料:在數(shù)學(xué)課上,老師提出如下問(wèn)題:小亮的作法如下:老師說(shuō):“小亮的作法正確”請(qǐng)回答:小亮的作圖依據(jù)是______.12.如圖,D、E分別是△ABC的邊AB、BC上的點(diǎn),DE∥AC,若S△BDE:S△CDE=1:3,則BE:BC的值為_________.13.如圖,在平行四邊形ABCD中,AB=6,AD=9,∠BAD的平分線交BC于點(diǎn)E,交DC的延長(zhǎng)線于點(diǎn)F,BG⊥AE,垂足為G,BG=4,則△CEF的周長(zhǎng)為____.14.如圖,在每個(gè)小正方形的邊長(zhǎng)為1的網(wǎng)格中,點(diǎn)A,B,C均在格點(diǎn)上.(Ⅰ)AC的長(zhǎng)等于_____;(Ⅱ)在線段AC上有一點(diǎn)D,滿足AB2=AD?AC,請(qǐng)?jiān)谌鐖D所示的網(wǎng)格中,用無(wú)刻度的直尺,畫出點(diǎn)D,并簡(jiǎn)要說(shuō)明點(diǎn)D的位置是如何找到的(不要求證明)_____.15.如圖,是一個(gè)正方體包裝盒的表面展開圖,若在其中的三個(gè)正方形A、B、C內(nèi)分別填上適當(dāng)?shù)臄?shù),使得將這個(gè)表面展開圖折成正方體后,相對(duì)面上的兩個(gè)數(shù)互為相反數(shù),則填在B內(nèi)的數(shù)為______.16.有4根細(xì)木棒,長(zhǎng)度分別為2cm、3cm、4cm、5cm,從中任選3根,恰好能搭成一個(gè)三角形的概率是__________.17.如圖,是由一些小立方塊所搭幾何體的三種視圖,若在所搭幾何體的基礎(chǔ)上(不改變?cè)瓗缀误w中小立方塊的位置),繼續(xù)添加相同的小立方塊,以搭成一個(gè)大正方體,至少還需要________個(gè)小立方塊.三、解答題(共7小題,滿分69分)18.(10分)如圖1,拋物線y=ax2+bx﹣2與x軸交于點(diǎn)A(﹣1,0),B(4,0)兩點(diǎn),與y軸交于點(diǎn)C,經(jīng)過(guò)點(diǎn)B的直線交y軸于點(diǎn)E(0,2).(1)求該拋物線的解析式;(2)如圖2,過(guò)點(diǎn)A作BE的平行線交拋物線于另一點(diǎn)D,點(diǎn)P是拋物線上位于線段AD下方的一個(gè)動(dòng)點(diǎn),連結(jié)PA,EA,ED,PD,求四邊形EAPD面積的最大值;(3)如圖3,連結(jié)AC,將△AOC繞點(diǎn)O逆時(shí)針?lè)较蛐D(zhuǎn),記旋轉(zhuǎn)中的三角形為△A′OC′,在旋轉(zhuǎn)過(guò)程中,直線OC′與直線BE交于點(diǎn)Q,若△BOQ為等腰三角形,請(qǐng)直接寫出點(diǎn)Q的坐標(biāo).19.(5分)已知AB是⊙O的直徑,弦CD⊥AB于H,過(guò)CD延長(zhǎng)線上一點(diǎn)E作⊙O的切線交AB的延長(zhǎng)線于F,切點(diǎn)為G,連接AG交CD于K.(1)如圖1,求證:KE=GE;(2)如圖2,連接CABG,若∠FGB=∠ACH,求證:CA∥FE;(3)如圖3,在(2)的條件下,連接CG交AB于點(diǎn)N,若sinE=,AK=,求CN的長(zhǎng).20.(8分)今年3月12日植樹節(jié)期間,學(xué)校預(yù)購(gòu)進(jìn)A,B兩種樹苗.若購(gòu)進(jìn)A種樹苗3棵,B種樹苗5棵,需2100元;若購(gòu)進(jìn)A種樹苗4棵,B種樹苗10棵,需3800元.求購(gòu)進(jìn)A,B兩種樹苗的單價(jià);若該學(xué)校準(zhǔn)備用不多于8000元的錢購(gòu)進(jìn)這兩種樹苗共30棵,求A種樹苗至少需購(gòu)進(jìn)多少棵.21.(10分)已知拋物線,與軸交于兩點(diǎn),與軸交于點(diǎn),且拋物線的對(duì)稱軸為直線.(1)拋物線的表達(dá)式;(2)若拋物線與拋物線關(guān)于直線對(duì)稱,拋物線與軸交于點(diǎn)兩點(diǎn)(點(diǎn)在點(diǎn)左側(cè)),要使,求所有滿足條件的拋物線的表達(dá)式.22.(10分)如圖,△ABC中,D是AB上一點(diǎn),DE⊥AC于點(diǎn)E,F(xiàn)是AD的中點(diǎn),F(xiàn)G⊥BC于點(diǎn)G,與DE交于點(diǎn)H,若FG=AF,AG平分∠CAB,連接GE,GD.求證:△ECG≌△GHD;23.(12分)若關(guān)于的方程無(wú)解,求的值.24.(14分)如圖,四邊形ABCD,AD∥BC,DC⊥BC于C點(diǎn),AE⊥BD于E,且DB=DA.求證:AE=CD.

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、D【解析】試題分析:①如圖,∵拋物線開口方向向下,∴a<1.∵對(duì)稱軸x,∴<1.∴ab>1.故①正確.②如圖,當(dāng)x=1時(shí),y<1,即a+b+c<1.故②正確.③如圖,當(dāng)x=﹣1時(shí),y=a﹣b+c>1,∴2a﹣2b+2c>1,即3b﹣2b+2c>1.∴b+2c>1.故③正確.④如圖,當(dāng)x=﹣1時(shí),y>1,即a﹣b+c>1,∵拋物線與y軸交于正半軸,∴c>1.∵b<1,∴c﹣b>1.∴(a﹣b+c)+(c﹣b)+2c>1,即a﹣2b+4c>1.故④正確.⑤如圖,對(duì)稱軸,則.故⑤正確.綜上所述,正確的結(jié)論是①②③④⑤,共5個(gè).故選D.2、C【解析】

根據(jù)相反數(shù)的定義進(jìn)行解答即可.【詳解】解:由A表示-2,B表示-1,C表示0.75,D表示2.根據(jù)相反數(shù)和為0的特點(diǎn),可確定點(diǎn)A和點(diǎn)D表示互為相反數(shù)的點(diǎn).故答案為C.【點(diǎn)睛】本題考查了相反數(shù)的定義,掌握相反數(shù)和為0是解答本題的關(guān)鍵.3、C【解析】試題解析:關(guān)于的一元二次方程沒有實(shí)數(shù)根,,解得:故選C.4、B【解析】

解:連接OB,∵四邊形ABCO是平行四邊形,∴OC=AB,又OA=OB=OC,∴OA=OB=AB,∴△AOB為等邊三角形,∵OF⊥OC,OC∥AB,∴OF⊥AB,∴∠BOF=∠AOF=30°,由圓周角定理得∠BAF=∠BOF=15°故選:B5、B【解析】

由于ED∥BC,可證得△ABC∽△ADE,根據(jù)相似三角形所得比例線段,即可求得AE的長(zhǎng).【詳解】∵ED∥BC,∴△ABC∽△ADE,∴=,∴==,即AE=9;∴AE=9.故答案選B.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是相似三角形的判定與性質(zhì),解題的關(guān)鍵是熟練的掌握相似三角形的判定與性質(zhì).6、D.【解析】試題分析:A、原式=a6,不符合題意;B、原式=a2+2ab+b2,不符合題意;C、原式=1,不符合題意;D、原式=a6,符合題意,故選D考點(diǎn):整式的混合運(yùn)算7、B【解析】當(dāng)k>0時(shí),一次函數(shù)y=kx﹣k的圖象過(guò)一、三、四象限,反比例函數(shù)y=的圖象在一、三象限,∴A、C不符合題意,B符合題意;當(dāng)k<0時(shí),一次函數(shù)y=kx﹣k的圖象過(guò)一、二、四象限,反比例函數(shù)y=的圖象在二、四象限,∴D不符合題意.故選B.8、C【解析】

分a>1和a<1兩種情況根據(jù)二次函數(shù)的對(duì)稱性確定出y1與y2的大小關(guān)系,然后對(duì)各選項(xiàng)分析判斷即可得解.【詳解】解:①a>1時(shí),二次函數(shù)圖象開口向上,∵|x1﹣2|>|x2﹣2|,∴y1>y2,無(wú)法確定y1+y2的正負(fù)情況,a(y1﹣y2)>1,②a<1時(shí),二次函數(shù)圖象開口向下,∵|x1﹣2|>|x2﹣2|,∴y1<y2,無(wú)法確定y1+y2的正負(fù)情況,a(y1﹣y2)>1,綜上所述,表達(dá)式正確的是a(y1﹣y2)>1.故選:C.【點(diǎn)睛】本題主要考查二次函數(shù)的性質(zhì),利用了二次函數(shù)的對(duì)稱性,關(guān)鍵要掌握根據(jù)二次項(xiàng)系數(shù)a的正負(fù)分情況討論.9、D【解析】分析:作BC⊥x軸于C,如圖,根據(jù)等邊三角形的性質(zhì)得則易得A點(diǎn)坐標(biāo)和O點(diǎn)坐標(biāo),再利用勾股定理計(jì)算出然后根據(jù)第二象限點(diǎn)的坐標(biāo)特征可寫出B點(diǎn)坐標(biāo);由旋轉(zhuǎn)的性質(zhì)得則點(diǎn)A′與點(diǎn)B重合,于是可得點(diǎn)A′的坐標(biāo).詳解:作BC⊥x軸于C,如圖,∵△OAB是邊長(zhǎng)為4的等邊三角形∴∴A點(diǎn)坐標(biāo)為(?4,0),O點(diǎn)坐標(biāo)為(0,0),在Rt△BOC中,∴B點(diǎn)坐標(biāo)為∵△OAB按順時(shí)針?lè)较蛐D(zhuǎn),得到△OA′B′,∴∴點(diǎn)A′與點(diǎn)B重合,即點(diǎn)A′的坐標(biāo)為故選D.點(diǎn)睛:考查圖形的旋轉(zhuǎn),等邊三角形的性質(zhì).求解時(shí),注意等邊三角形三線合一的性質(zhì).10、B【解析】法一,依題意△ABC為直角三角形,∴∠A+∠B=90°,∴cosB=,∵,∴sinB=,∵tanB==故選B法2,依題意可設(shè)a=4,b=3,則c=5,∵tanb=故選B二、填空題(共7小題,每小題3分,滿分21分)11、兩點(diǎn)確定一條直線;同圓或等圓中半徑相等【解析】

根據(jù)尺規(guī)作圖的方法,兩點(diǎn)之間確定一條直線的原理即可解題.【詳解】解:∵兩點(diǎn)之間確定一條直線,CD和AB都是圓的半徑,∴AB=CD,依據(jù)是兩點(diǎn)確定一條直線;同圓或等圓中半徑相等.【點(diǎn)睛】本題考查了尺規(guī)作圖:一條線段等于已知線段,屬于簡(jiǎn)單題,熟悉尺規(guī)作圖方法是解題關(guān)鍵.12、1:4【解析】

由S△BDE:S△CDE=1:3,得到

,于是得到

.【詳解】解:兩個(gè)三角形同高,底邊之比等于面積比.故答案為【點(diǎn)睛】本題考查了三角形的面積,比例的性質(zhì)等知識(shí),知道等高不同底的三角形的面積的比等于底的比是解題的關(guān)鍵.13、8【解析】試題解析:∵在?ABCD中,AB=CD=6,AD=BC=9,∠BAD的平分線交BC于點(diǎn)E,∴∠BAF=∠DAF,∵AB∥DF,∴∠BAF=∠F,∴∠F=∠DAF,∴△ADF是等腰三角形,AD=DF=9;∵AD∥BC,∴△EFC是等腰三角形,且FC=CE.∴EC=FC=9-6=3,∴AB=BE.∴在△ABG中,BG⊥AE,AB=6,BG=4可得:AG=2,又∵BG⊥AE,∴AE=2AG=4,∴△ABE的周長(zhǎng)等于16,又∵?ABCD,∴△CEF∽△BEA,相似比為1:2,∴△CEF的周長(zhǎng)為814、5見解析.【解析】

(1)由勾股定理即可求解;(2)尋找格點(diǎn)M和N,構(gòu)建與△ABC全等的△AMN,易證MN⊥AC,從而得到MN與AC的交點(diǎn)即為所求D點(diǎn).【詳解】(1)AC=;(2)如圖,連接格點(diǎn)M和N,由圖可知:AB=AM=4,BC=AN=,AC=MN=,∴△ABC≌△MAN,∴∠AMN=∠BAC,∴∠MAD+∠CAB=∠MAD+∠AMN=90°,∴MN⊥AC,易解得△MAN以MN為底時(shí)的高為,∵AB2=AD?AC,∴AD=AB2÷AC=,綜上可知,MN與AC的交點(diǎn)即為所求D點(diǎn).【點(diǎn)睛】本題考查了平面直角坐標(biāo)系中定點(diǎn)的問(wèn)題,理解第2問(wèn)中構(gòu)造全等三角形從而確定D點(diǎn)的思路.15、1【解析】試題解析:∵正方體的展開圖中對(duì)面不存在公共部分,∴B與-1所在的面為對(duì)面.∴B內(nèi)的數(shù)為1.故答案為1.16、【解析】

根據(jù)題意,使用列舉法可得從有4根細(xì)木棒中任取3根的總共情況數(shù)目以及能搭成一個(gè)三角形的情況數(shù)目,根據(jù)概率的計(jì)算方法,計(jì)算可得答案.【詳解】根據(jù)題意,從有4根細(xì)木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4種取法,而能搭成一個(gè)三角形的有2、3、4;3、4、5,2、4、5,三種,得P=.故其概率為:.【點(diǎn)睛】本題考查概率的計(jì)算方法,使用列舉法解題時(shí),注意按一定順序,做到不重不漏.用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.17、54【解析】試題解析:由主視圖可知,搭成的幾何體有三層,且有4列;由左視圖可知,搭成的幾何體共有3行;第一層有7個(gè)正方體,第二層有2個(gè)正方體,第三層有1個(gè)正方體,共有10個(gè)正方體,∵搭在這個(gè)幾何體的基礎(chǔ)上添加相同大小的小正方體,以搭成一個(gè)大正方體,∴搭成的大正方體的共有4×4×4=64個(gè)小正方體,∴至少還需要64-10=54個(gè)小正方體.【點(diǎn)睛】先由主視圖、左視圖、俯視圖求出原來(lái)的幾何體共有10個(gè)正方體,再根據(jù)搭成的大正方體的共有4×4×4=64個(gè)小正方體,即可得出答案.本題考查了學(xué)生對(duì)三視圖掌握程度和靈活運(yùn)用能力,同時(shí)也體現(xiàn)了對(duì)空間想象能力方面的考查,關(guān)鍵是求出搭成的大正方體共有多少個(gè)小正方體.三、解答題(共7小題,滿分69分)18、(1)y=x2﹣x﹣2;(2)9;(3)Q坐標(biāo)為(﹣)或(4﹣)或(2,1)或(4+,﹣).【解析】試題分析:把點(diǎn)代入拋物線,求出的值即可.先用待定系數(shù)法求出直線BE的解析式,進(jìn)而求得直線AD的解析式,設(shè)則表示出,用配方法求出它的最大值,聯(lián)立方程求出點(diǎn)的坐標(biāo),最大值=,進(jìn)而計(jì)算四邊形EAPD面積的最大值;分兩種情況進(jìn)行討論即可.試題解析:(1)∵在拋物線上,∴解得∴拋物線的解析式為(2)過(guò)點(diǎn)P作軸交AD于點(diǎn)G,∵∴直線BE的解析式為∵AD∥BE,設(shè)直線AD的解析式為代入,可得∴直線AD的解析式為設(shè)則則∴當(dāng)x=1時(shí),PG的值最大,最大值為2,由解得或∴∴最大值=∵AD∥BE,∴∴S四邊形APDE最大=S△ADP最大+(3)①如圖3﹣1中,當(dāng)時(shí),作于T.∵∴∴∴可得②如圖3﹣2中,當(dāng)時(shí),當(dāng)時(shí),當(dāng)時(shí),Q3綜上所述,滿足條件點(diǎn)點(diǎn)Q坐標(biāo)為或或或19、(1)證明見解析;(2)△EAD是等腰三角形.證明見解析;(3).【解析】試題分析:(1)連接OG,則由已知易得∠OGE=∠AHK=90°,由OG=OA可得∠AGO=∠OAG,從而可得∠KGE=∠AKH=∠EKG,這樣即可得到KE=GE;(2)設(shè)∠FGB=α,由AB是直徑可得∠AGB=90°,從而可得∠KGE=90°-α,結(jié)合GE=KE可得∠EKG=90°-α,這樣在△GKE中可得∠E=2α,由∠FGB=∠ACH可得∠ACH=2α,這樣可得∠E=∠ACH,由此即可得到CA∥EF;(3)如下圖2,作NP⊥AC于P,由(2)可知∠ACH=∠E,由此可得sinE=sin∠ACH=,設(shè)AH=3a,可得AC=5a,CH=4a,則tan∠CAH=,由(2)中結(jié)論易得∠CAK=∠EGK=∠EKG=∠AKC,從而可得CK=AC=5a,由此可得HK=a,tan∠AKH=,AK=a,結(jié)合AK=可得a=1,則AC=5;在四邊形BGKH中,由∠BHK=∠BKG=90°,可得∠ABG+∠HKG=180°,結(jié)合∠AKH+∠GKG=180°,∠ACG=∠ABG可得∠ACG=∠AKH,在Rt△APN中,由tan∠CAH=,可設(shè)PN=12b,AP=9b,由tan∠ACG=tan∠AKH=3可得CP=4b,由此可得AC=AP+CP==5,則可得b=,由此即可在Rt△CPN中由勾股定理解出CN的長(zhǎng).試題解析:(1)如圖1,連接OG.∵EF切⊙O于G,∴OG⊥EF,∴∠AGO+∠AGE=90°,∵CD⊥AB于H,∴∠AHD=90°,∴∠OAG=∠AKH=90°,∵OA=OG,∴∠AGO=∠OAG,∴∠AGE=∠AKH,∵∠EKG=∠AKH,∴∠EKG=∠AGE,∴KE=GE.(2)設(shè)∠FGB=α,∵AB是直徑,∴∠AGB=90°,∴∠AGE=∠EKG=90°﹣α,∴∠E=180°﹣∠AGE﹣∠EKG=2α,∵∠FGB=∠ACH,∴∠ACH=2α,∴∠ACH=∠E,∴CA∥FE.(3)作NP⊥AC于P.∵∠ACH=∠E,∴sin∠E=sin∠ACH=,設(shè)AH=3a,AC=5a,則CH=,tan∠CAH=,∵CA∥FE,∴∠CAK=∠AGE,∵∠AGE=∠AKH,∴∠CAK=∠AKH,∴AC=CK=5a,HK=CK﹣CH=4a,tan∠AKH==3,AK=,∵AK=,∴,∴a=1.AC=5,∵∠BHD=∠AGB=90°,∴∠BHD+∠AGB=180°,在四邊形BGKH中,∠BHD+∠HKG+∠AGB+∠ABG=360°,∴∠ABG+∠HKG=180°,∵∠AKH+∠HKG=180°,∴∠AKH=∠ABG,∵∠ACN=∠ABG,∴∠AKH=∠ACN,∴tan∠AKH=tan∠ACN=3,∵NP⊥AC于P,∴∠APN=∠CPN=90°,在Rt△APN中,tan∠CAH=,設(shè)PN=12b,則AP=9b,在Rt△CPN中,tan∠ACN==3,∴CP=4b,∴AC=AP+CP=13b,∵AC=5,∴13b=5,∴b=,∴CN===.20、(1)A種樹苗的單價(jià)為200元,B種樹苗的單價(jià)為300元;(2)10棵【解析】試題分析:(1)設(shè)B種樹苗的單價(jià)為x元,則A種樹苗的單價(jià)為y元.則由等量關(guān)系列出方程組解答即可;(2)設(shè)購(gòu)買A種樹苗a棵,則B種樹苗為(30﹣a)棵,然后根據(jù)總費(fèi)用和兩種樹苗的棵數(shù)關(guān)系列出不等式解答即可.試題解析:(1)設(shè)B種樹苗的單價(jià)為x元,則A種樹苗的單價(jià)為y元,可得:,解得:,答:A種樹苗的單價(jià)為200元,B種樹苗的單價(jià)為300元.(2)設(shè)購(gòu)買A種樹苗a棵,則B種樹苗為(30﹣a)棵,可得:200a+300(30﹣a)≤8000,解得:a≥10,答:A種樹苗至少需購(gòu)進(jìn)10棵.考點(diǎn):1.一元一次不等式的應(yīng)用;2.二元一次方程組的應(yīng)用21、(1);(2).【解析】

(1)根據(jù)待定系數(shù)法即可求解;(2)根據(jù)題意知,根據(jù)三角形面積公式列方程即可求解.【詳解】(1)根據(jù)題意得:,解得:,拋物線的表達(dá)式為:;(2)∵拋物線與拋物線關(guān)于直線對(duì)稱,拋物線的對(duì)稱軸為直線∴拋物線的對(duì)稱軸為直線,∵拋物線與軸交于點(diǎn)兩點(diǎn)且點(diǎn)在點(diǎn)左側(cè),∴的橫坐標(biāo)為:∴,令,則,解得:,令,則,∴點(diǎn)的坐標(biāo)分別為,,點(diǎn)的坐標(biāo)為,∴,∵,∴,即,解得:或,∵拋物線與拋物線關(guān)于直線對(duì)稱,拋物線的對(duì)稱軸為直線,∴拋物線的表達(dá)式為或.【點(diǎn)睛】本題屬于二次函數(shù)綜合題,涉及了待定

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論