2023屆福建省安溪一中、養(yǎng)正中學(xué)高考適應(yīng)性考試數(shù)學(xué)試卷含解析_第1頁
2023屆福建省安溪一中、養(yǎng)正中學(xué)高考適應(yīng)性考試數(shù)學(xué)試卷含解析_第2頁
2023屆福建省安溪一中、養(yǎng)正中學(xué)高考適應(yīng)性考試數(shù)學(xué)試卷含解析_第3頁
2023屆福建省安溪一中、養(yǎng)正中學(xué)高考適應(yīng)性考試數(shù)學(xué)試卷含解析_第4頁
2023屆福建省安溪一中、養(yǎng)正中學(xué)高考適應(yīng)性考試數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023年高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),若函數(shù)的所有零點(diǎn)依次記為,且,則()A. B. C. D.2.已知直線:與橢圓交于、兩點(diǎn),與圓:交于、兩點(diǎn).若存在,使得,則橢圓的離心率的取值范圍為()A. B. C. D.3.在四面體中,為正三角形,邊長為6,,,,則四面體的體積為()A. B. C.24 D.4.已知(),i為虛數(shù)單位,則()A. B.3 C.1 D.55.設(shè),點(diǎn),,,,設(shè)對一切都有不等式成立,則正整數(shù)的最小值為()A. B. C. D.6.已知非零向量滿足,若夾角的余弦值為,且,則實(shí)數(shù)的值為()A. B. C.或 D.7.已知函數(shù)fx=sinωx+π6+A.16,13 B.18.已知為虛數(shù)單位,實(shí)數(shù)滿足,則()A.1 B. C. D.9.在四邊形中,,,,,,點(diǎn)在線段的延長線上,且,點(diǎn)在邊所在直線上,則的最大值為()A. B. C. D.10.下列說法正確的是()A.“若,則”的否命題是“若,則”B.“若,則”的逆命題為真命題C.,使成立D.“若,則”是真命題11.集合,則集合的真子集的個數(shù)是A.1個 B.3個 C.4個 D.7個12.中,點(diǎn)在邊上,平分,若,,,,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線的對稱軸與準(zhǔn)線的交點(diǎn)為,直線與交于,兩點(diǎn),若,則實(shí)數(shù)__________.14.(5分)國家禁毒辦于2019年11月5日至12月15日在全國青少年毒品預(yù)防教育數(shù)字化網(wǎng)絡(luò)平臺上開展2019年全國青少年禁毒知識答題活動,活動期間進(jìn)入答題專區(qū),點(diǎn)擊“開始答題”按鈕后,系統(tǒng)自動生成20道題.已知某校高二年級有甲、乙、丙、丁、戊五位同學(xué)在這次活動中答對的題數(shù)分別是,則這五位同學(xué)答對題數(shù)的方差是____________.15.已知的終邊過點(diǎn),若,則__________.16.某校開展“我身邊的榜樣”評選活動,現(xiàn)對3名候選人甲、乙、丙進(jìn)行不記名投票,投票要求詳見選票.這3名候選人的得票數(shù)(不考慮是否有效)分別為總票數(shù)的88%,75%,46%,則本次投票的有效率(有效票數(shù)與總票數(shù)的比值)最高可能為百分之________.“我身邊的榜樣”評選選票候選人符號注:1.同意畫“○”,不同意畫“×”.2.每張選票“○”的個數(shù)不超過2時才為有效票.甲乙丙三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,直線交曲線于兩點(diǎn),為中點(diǎn).(1)求曲線的直角坐標(biāo)方程和點(diǎn)的軌跡的極坐標(biāo)方程;(2)若,求的值.18.(12分)在如圖所示的多面體中,四邊形是矩形,梯形為直角梯形,平面平面,且,,.(1)求證:平面.(2)求二面角的大小.19.(12分)已知曲線的參數(shù)方程為(為參數(shù)),曲線的參數(shù)方程為(為參數(shù)).(1)求和的普通方程;(2)過坐標(biāo)原點(diǎn)作直線交曲線于點(diǎn)(異于),交曲線于點(diǎn),求的最小值.20.(12分)對于給定的正整數(shù)k,若各項(xiàng)均不為0的數(shù)列滿足:對任意正整數(shù)總成立,則稱數(shù)列是“數(shù)列”.(1)證明:等比數(shù)列是“數(shù)列”;(2)若數(shù)列既是“數(shù)列”又是“數(shù)列”,證明:數(shù)列是等比數(shù)列.21.(12分)已知函數(shù).(1)當(dāng)時,不等式恒成立,求的最小值;(2)設(shè)數(shù)列,其前項(xiàng)和為,證明:.22.(10分)已知函數(shù),其中為實(shí)常數(shù).(1)若存在,使得在區(qū)間內(nèi)單調(diào)遞減,求的取值范圍;(2)當(dāng)時,設(shè)直線與函數(shù)的圖象相交于不同的兩點(diǎn),,證明:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

令,求出在的對稱軸,由三角函數(shù)的對稱性可得,將式子相加并整理即可求得的值.【詳解】令,得,即對稱軸為.函數(shù)周期,令,可得.則函數(shù)在上有8條對稱軸.根據(jù)正弦函數(shù)的性質(zhì)可知,將以上各式相加得:故選:C.【點(diǎn)睛】本題考查了三角函數(shù)的對稱性,考查了三角函數(shù)的周期性,考查了等差數(shù)列求和.本題的難點(diǎn)是將所求的式子拆分為的形式.2、A【解析】

由題意可知直線過定點(diǎn)即為圓心,由此得到坐標(biāo)的關(guān)系,再根據(jù)點(diǎn)差法得到直線的斜率與坐標(biāo)的關(guān)系,由此化簡并求解出離心率的取值范圍.【詳解】設(shè),且線過定點(diǎn)即為的圓心,因?yàn)?,所以,又因?yàn)?,所以,所以,所以,所以,所以,所以,所?故選:A.【點(diǎn)睛】本題考查橢圓與圓的綜合應(yīng)用,著重考查了橢圓離心率求解以及點(diǎn)差法的運(yùn)用,難度一般.通過運(yùn)用點(diǎn)差法達(dá)到“設(shè)而不求”的目的,大大簡化運(yùn)算.3、A【解析】

推導(dǎo)出,分別取的中點(diǎn),連結(jié),則,推導(dǎo)出,從而,進(jìn)而四面體的體積為,由此能求出結(jié)果.【詳解】解:在四面體中,為等邊三角形,邊長為6,,,,,,分別取的中點(diǎn),連結(jié),則,且,,,,平面,平面,,四面體的體積為:.故答案為:.【點(diǎn)睛】本題考查四面體體積的求法,考查空間中線線,線面,面面間的位置關(guān)系等基礎(chǔ)知識,考查運(yùn)算求解能力.4、C【解析】

利用復(fù)數(shù)代數(shù)形式的乘法運(yùn)算化簡得答案.【詳解】由,得,解得.故選:C.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘法運(yùn)算,是基礎(chǔ)題.5、A【解析】

先求得,再求得左邊的范圍,只需,利用單調(diào)性解得t的范圍.【詳解】由題意知sin,∴,∴,隨n的增大而增大,∴,∴,即,又f(t)=在t上單增,f(2)=-1<0,f(3)=2>0,∴正整數(shù)的最小值為3.【點(diǎn)睛】本題考查了數(shù)列的通項(xiàng)及求和問題,考查了數(shù)列的單調(diào)性及不等式的解法,考查了轉(zhuǎn)化思想,屬于中檔題.6、D【解析】

根據(jù)向量垂直則數(shù)量積為零,結(jié)合以及夾角的余弦值,即可求得參數(shù)值.【詳解】依題意,得,即.將代入可得,,解得(舍去).故選:D.【點(diǎn)睛】本題考查向量數(shù)量積的應(yīng)用,涉及由向量垂直求參數(shù)值,屬基礎(chǔ)題.7、A【解析】

將fx整理為3sinωx+π3,根據(jù)x的范圍可求得ωx+π3∈π【詳解】f當(dāng)x∈0,π時,又f0=3sin由fx在0,π上的值域?yàn)?2解得:ω∈本題正確選項(xiàng):A【點(diǎn)睛】本題考查利用正弦型函數(shù)的值域求解參數(shù)范圍的問題,關(guān)鍵是能夠結(jié)合正弦型函數(shù)的圖象求得角的范圍的上下限,從而得到關(guān)于參數(shù)的不等式.8、D【解析】,則故選D.9、A【解析】

依題意,如圖以為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系,表示出點(diǎn)的坐標(biāo),根據(jù)求出的坐標(biāo),求出邊所在直線的方程,設(shè),利用坐標(biāo)表示,根據(jù)二次函數(shù)的性質(zhì)求出最大值.【詳解】解:依題意,如圖以為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系,由,,,,,,,因?yàn)辄c(diǎn)在線段的延長線上,設(shè),解得,所在直線的方程為因?yàn)辄c(diǎn)在邊所在直線上,故設(shè)當(dāng)時故選:【點(diǎn)睛】本題考查向量的數(shù)量積,關(guān)鍵是建立平面直角坐標(biāo)系,屬于中檔題.10、D【解析】選項(xiàng)A,否命題為“若,則”,故A不正確.選項(xiàng)B,逆命題為“若,則”,為假命題,故B不正確.選項(xiàng)C,由題意知對,都有,故C不正確.選項(xiàng)D,命題的逆否命題“若,則”為真命題,故“若,則”是真命題,所以D正確.選D.11、B【解析】

由題意,結(jié)合集合,求得集合,得到集合中元素的個數(shù),即可求解,得到答案.【詳解】由題意,集合,則,所以集合的真子集的個數(shù)為個,故選B.【點(diǎn)睛】本題主要考查了集合的運(yùn)算和集合中真子集的個數(shù)個數(shù)的求解,其中作出集合的運(yùn)算,得到集合,再由真子集個數(shù)的公式作出計(jì)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力.12、B【解析】

由平分,根據(jù)三角形內(nèi)角平分線定理可得,再根據(jù)平面向量的加減法運(yùn)算即得答案.【詳解】平分,根據(jù)三角形內(nèi)角平分線定理可得,又,,,,..故選:.【點(diǎn)睛】本題主要考查平面向量的線性運(yùn)算,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由于直線過拋物線的焦點(diǎn),因此過,分別作的準(zhǔn)線的垂線,垂足分別為,,由拋物線的定義及平行線性質(zhì)可得,從而再由拋物線定義可求得直線傾斜角的余弦,再求得正切即為直線斜率.注意對稱性,問題應(yīng)該有兩解.【詳解】直線過拋物線的焦點(diǎn),,過,分別作的準(zhǔn)線的垂線,垂足分別為,,由拋物線的定義知,.因?yàn)椋裕驗(yàn)?,所以,從而.設(shè)直線的傾斜角為,不妨設(shè),如圖,則,,同理,則,解得,,由對稱性還有滿足題意.,綜上,.【點(diǎn)睛】本題考查拋物線的性質(zhì),考查拋物線的焦點(diǎn)弦問題,掌握拋物線的定義,把拋物線上點(diǎn)到焦點(diǎn)距離與它到距離聯(lián)系起來是解題關(guān)鍵.14、2【解析】

由這五位同學(xué)答對的題數(shù)分別是,得該組數(shù)據(jù)的平均數(shù),則方差.15、【解析】

】由題意利用任意角的三角函數(shù)的定義,求得的值.【詳解】∵的終邊過點(diǎn),若,.即答案為-2.【點(diǎn)睛】本題主要考查任意角的三角函數(shù)的定義和誘導(dǎo)公式,屬基礎(chǔ)題.16、91【解析】

設(shè)共有選票張,且票對應(yīng)張數(shù)為,由此可構(gòu)造不等式組化簡得到,由投票有效率越高越小,可知,由此計(jì)算可得投票有效率.【詳解】不妨設(shè)共有選票張,投票的有,票的有,票的有,則由題意可得:,化簡得:,即,投票有效率越高,越小,則,,故本次投票的有效率(有效票數(shù)與總票數(shù)的比值)最高可能為.故答案為:.【點(diǎn)睛】本題考查線性規(guī)劃的實(shí)際應(yīng)用問題,關(guān)鍵是能夠根據(jù)已知條件構(gòu)造出變量所滿足的關(guān)系式.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),;(2)或【解析】

(1)根據(jù)曲線的參數(shù)方程消去參數(shù),可得曲線的直角坐標(biāo)方程,再由,,可得點(diǎn)的軌跡的極坐標(biāo)方程;(2)將曲線極坐標(biāo)方程求,與直線極坐標(biāo)方程聯(lián)立,消去,得到關(guān)于的二次方程,由的幾何意義可求出,而(1)可知,然后列方程可求出的值.【詳解】(1)曲線的直角坐標(biāo)方程為,圓的圓心為,設(shè),所以,則由,即為點(diǎn)軌跡的極坐標(biāo)方程.(2)曲線的極坐標(biāo)方程為,將與曲線的極坐標(biāo)方程聯(lián)立得,,設(shè),所以,,由,即,令,上述方程可化為,解得.由,所以,即或.【點(diǎn)睛】此題考查參數(shù)方程與普通方程的互化,極坐標(biāo)方程與直角坐標(biāo)方程的互化,利用極坐標(biāo)求點(diǎn)的軌跡方程,考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想,屬于中檔題.18、(1)見解析;(2)【解析】

(1)根據(jù)面面垂直性質(zhì)及線面垂直性質(zhì),可證明;由所給線段關(guān)系,結(jié)合勾股定理逆定理,可證明,進(jìn)而由線面垂直的判定定理證明平面.(2)建立空間直角坐標(biāo)系,寫出各個點(diǎn)的坐標(biāo),并求得平面和平面的法向量,由空間向量法求得兩個平面夾角的余弦值,結(jié)合圖形即可求得二面角的大小.【詳解】(1)證明:∵平面平面ABEG,且,∴平面,∴,由題意可得,∴,∵,且,∴平面.(2)如圖所示,建立空間直角坐標(biāo)系,則,,,,,,.設(shè)平面的法向量是,則,令,,由(1)可知平面的法向量是,∴,由圖可知,二面角為鈍二面角,所以二面角的大小為.【點(diǎn)睛】本題考查了線面垂直的判定,面面垂直及線面垂直的性質(zhì)應(yīng)用,空間向量法求二面角的大小,屬于中檔題.19、(1)曲線的普通方程為:;曲線的普通方程為:(2)【解析】

(1)消去曲線參數(shù)方程中的參數(shù),求得和的普通方程.(2)設(shè)出過原點(diǎn)的直線的極坐標(biāo)方程,代入曲線的極坐標(biāo)方程,求得的表達(dá)式,結(jié)合三角函數(shù)值域的求法,求得的最小值.【詳解】(1)曲線的普通方程為:;曲線的普通方程為:.(2)設(shè)過原點(diǎn)的直線的極坐標(biāo)方程為;由得,所以曲線的極坐標(biāo)方程為在曲線中,.由得曲線的極坐標(biāo)方程為,所以而到直線與曲線的交點(diǎn)的距離為,因此,即的最小值為.【點(diǎn)睛】本小題主要考查參數(shù)方程化為普通方程,考查直角坐標(biāo)方程化為極坐標(biāo)方程,考查極坐標(biāo)系下距離的有關(guān)計(jì)算,屬于中檔題.20、(1)證明見詳解;(2)證明見詳解【解析】

(1)由是等比數(shù)列,由等比數(shù)列的性質(zhì)可得:即可證明.(2)既是“數(shù)列”又是“數(shù)列”,可得,,則對于任意都成立,則成等比數(shù)列,設(shè)公比為,驗(yàn)證得答案.【詳解】(1)證明:由是等比數(shù)列,由等比數(shù)列的性質(zhì)可得:等比數(shù)列是“數(shù)列”.(2)證明:既是“數(shù)列”又是“數(shù)列”,可得,()(),()可得:對于任意都成立,即成等比數(shù)列,即成等比數(shù)列,成等比數(shù)列,成等比數(shù)列,設(shè),()數(shù)列是“數(shù)列”時,由()可得:時,由()可得:,可得,同理可證成等比數(shù)列,數(shù)列是等比數(shù)列【點(diǎn)睛】本題是一道數(shù)列的新定義題目,考查了等比數(shù)列的性質(zhì)、通項(xiàng)公式等基本知識,考查代數(shù)推理、轉(zhuǎn)化與化歸以及綜合運(yùn)用數(shù)學(xué)知識探究與解決問題的能力,屬于難題.21、(1);(2)證明見解析.【解析】

(1),分,,三種情況推理即可;(2)由(1)可得,即,利用累加法即可得到證明.【詳解】(1)由,得.當(dāng)時,方程的,因此在區(qū)間上恒為負(fù)數(shù).所以時,,函數(shù)在區(qū)間上單調(diào)遞減.又,所以函數(shù)在區(qū)間上恒成立;當(dāng)時,方程有兩個不等實(shí)根,且滿足,所以函數(shù)的導(dǎo)函數(shù)在區(qū)間上大于零,函數(shù)在區(qū)間上單增,又,所以函數(shù)在區(qū)間上恒大于零,不滿足題意;當(dāng)時,在區(qū)間上,函數(shù)在區(qū)間上恒為正數(shù),所以在區(qū)間上恒為正數(shù),不滿足題意;綜上可知:若時,不等式恒成立,的最小值為.(2)由第(1)知:若時,.若,則,即成立.將換成,得成立,即,以此類推,得,,上述各式相加,得,又,所以.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)恒成立問題、證明數(shù)列不等式問題,考查學(xué)生的邏輯推理能力以及數(shù)學(xué)計(jì)算能力,是一道難題.22、(1);(2)見解析.【解析】

(1)將所求問題轉(zhuǎn)化為在上有解,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論