有關(guān)隧道方面外文文獻(xiàn)與翻譯_第1頁(yè)
有關(guān)隧道方面外文文獻(xiàn)與翻譯_第2頁(yè)
有關(guān)隧道方面外文文獻(xiàn)與翻譯_第3頁(yè)
有關(guān)隧道方面外文文獻(xiàn)與翻譯_第4頁(yè)
有關(guān)隧道方面外文文獻(xiàn)與翻譯_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

Aconvection-conductionmodelconditionsinsurroundingrockapermafrostregionsHEChunxiong(何雄),KeyofFrozenSoilGeocryology,ChineseAcademyofLanzhouofAppliedUniversityofTechnology,China)WU吳汪ZHULinnan(朱林楠keyofFrozenSoilChineseAcademyofLanzhouChina)ReceivedFebruary8,Abstractonanalysesoffundamentalhydrogeologicalconditionsofinthecombinedmodelforflowinfieldinhasbeenconstructed.thetemperatureinthe2hasnumerically.resultsinagreementwiththebasedinconditionsofsirpressure,windhydrogeologyengineeringgeology,betweenonofthetunnelwallandtheexitofthehasthefreeze-thawconditionsatDabanshanwhichnowconstructionisKeywords:incoldheatexchangeconduction,AofhighwayrailwaytunnelsbeeninregionsneighboringinChina.thethermal

conditionsaftertunnelwasexcavatedsurroundingwallrocktheheavingcausedtolinerseepingwatericewhichwithtransportation.SimilarproblemsthefreezingdamageinthetunnelsappearedinlikeRussia,Japanitispredictfreeze-thawconditionsinthesurroundingrockprovideabasisforthedesign,maintenanceofnewincoldregions.Manytunnels,inregionsortheirneighbouringareas,throughthebeneathpermafrostbase.Aftera,theoriginalthermodynamicalconditionsinthawreplacedmainlybyairconnectionswithouttheheatconditionsprincipallybyofflowinthetunnel,thecoefficientsofconvectiveheattransferwall,geothermalheat.Inordertopredictfreezeandconditionsofwallof,theaxialvariationsofairtemperatureandcoefficientsofconvectivetransfer,Lunardinidiscussedconditionstheapproximateformulaeobtainedinofoutsidecircularwithof.Wetheconditionsofatunnelwallsimilarlytheperiodicchangesofthetemperature.Infact,thetemperaturesofthesurroundingwallaffectotherfindvariationstheinfurthermore,isdifficulttoquantifyofconvectiveexchangeattheofwall.Thereforeitisnottodefineonofthetunnelwallaccordingtooutsideaircombineflowconvectiveheatex-changeheatconductioninthesurroundingrockmaterialinto,theconditionsofrockmaterialinconditionsofair,pressure,windatentryexitofthetheconditionsofgeology.Mathematical

Inordertoconstructappropriatemodel,weneedtheinsitufundamentalconditionsaba-sisusesceneofDabanshanDabanshanisonthefromofRiver,atanof3754.78-3m,withof1530analignmentfromsouthwesttonortheast.tunnelrunsfromthesouthwesttheSincemonthly-averagetemperatureisbeneathforattunneltheconstructionwouldforseveral,therockmaterialswouldbecomeduringtheconstructionconcludepatternofflowwouldmainlydominantwindspeedat,andofthetemperaturebetweentheinsideoutsideoftunnelwouldbe.Sincedominantwindnortheastatinwinter,airinthewouldgotoentry.thewindtrendisinsummer,pressuretheoftheexittheflowinthetunnelwouldbefromthesincespeedatsiteislowwecouldthatflowwouldbeprincipally,simplifytheto,thatflowaretheaxisofthetunnel,Ignoringinfluenceofaironthespeedofairflow,obtainthefollowingequation:

wherexaretimeandcoordinates;Uandspeeds;Tistemperature;is,pressuredividedbydensity);vair;aofLtheofRistheequivalentoftunnelDtheoftimeaftertheconstruction;,S(t),S(t)thawedpartsinrockfrespectively;

f

,

u

Cf

u

thermalconductivitiesvolumetricthermalcapacitiesinfrozenandthawedpartsrespectively;(x,(t)phasechangefront;Lhheatlatentoffreezingwater;Tocriticalfreezingof(assumeTo=℃).2forsolvingWefirstconcerningatthattheofthesurroundingrockdoesaffectspeedofconcerningthespeedofairflow,andthensolveeveryelapse.2.1usedfortheSincefirstthreein(1)thesecond

byxthethirdequationbyr.Afterpreliminaryobtainfollowingellipticconcerningp:in(1)usingthefollowingprocedures:(i)Assumefor,V0;(ii)substituting,V0into(2),(2),weobtainp0;(iii)solvingfirstsecond,U0,(iv)thefirstthirdof(1),U2,V2;(v)themomentum-averageofv1andU2weobtainnewU0,returnto(ii);(vi)aboveuntildisparityofthosesolutionsiniterationsissufficientlysmallissatisfiedweofp0V0asinitialforelapseconcerning2.2EntireusedforsolvingmentionedthetemperaturefieldofrocktheairflowaffectThusoftunneltheboundaryoffieldintheboundaryoffieldinairflowitisdifficultseparatelyidentifythetemperaturewallindependentlyconcerningthetemperatureofairflowthoseconcerningofthe.Inordertowiththissimultaneouslyofbasedonfactthatthetunnelwallsurfacebothequal.Weshouldinthephasewhileconcerningthetemperatureofrockthewhilesolvingofairflow,onlyneedtorelativeatwall.Thefor

thewithphasesamein2.3DeterminationofboundaryoftheUsingp=H,calculatepHairusing

PwhereTisabsolutetemperature,andGthehumidityconstantofLettingC

P

becapacitywithfixedpressure,thermalconductivity,dynamicofcalculatetheusingformulasa

CP

and

.Thethermalofrockfromtunnel2.3.2oftheconditionsobservedaveragewindspeedtheexitasboundaryconditionsofwind,andchoosethe(that,theofthewindtrend)and

pkLd)/[5]theof(thatexitofthedominant)wherektheofresistancealongthetunnelwall,d=2R,andvistheaverageWeapproximateTbythesinethethesceneprovideasuitableboundarybasedthepositionofthegeothermalofthawrockbeneathpermafrostbase.3Asimulatedthethemethodmentionedabove,welawofinthewiththeattheentryexitofNo.2thatthesimulatedresultsaretothedataTheXiluoqiNo.2locatedtheinpassesthroughbeneathpermafrostbase.Ithasaof

160fromnorthwesttowiththeofinthenorthwest,andelevation700Thedominantwindinthefromtowithamaximumspeedofm/sandminimummonthly-averagespeedof1.7.Basedthedataobserved,approximatesinelawofwithyearlyaveragesof,℃of℃17.6respectively.Thediameteris5.8mtheresistantcoefficientthetunnelwalliseffectofthermalparameteroftheonairmuchthanthatofwindspeed,temperaturetheexitwereferdataobservedinDabanshanTunnelforthethermalparameters.1thesimulatedairtemperatureinsideatentryoftunnelwithdata.Wethatisthan0`Cfromthe2showsacomparisonofobservedmonthly-average(distancegreater100fromentryexit)tunnel.Wethattheisthesame,themainreasonfortheistheerrorsthatfromvaryingatentryexit;,monthly-averagetemperatureofnotforJulyfor4Predictionoffreeze-thawconditionsforDabanshanTunnel4.1Thermalparameterandtheelevationof800mtheyearly-averageairtemperatureof-3℃,we

ddcalculatetheairp=0.774kg/m

.SincesteamIntheair,wechoosethethermalcapacitywithfixedofair/(0),heatp

W/(0C)thedynamic

9.218

).Aftercalculationthethermala=1

2

/skinematic,

2

/sConsideringthattheofautomobilesisthatoftheauto-mobilespassthroughtunnellowspeedweignorecomingfrommovementautomobilesinofair.Weconsiderrockaandchoosecavity

d

/

3

ofwaterwaterW=3%W=1%,thermal

1.9W/.

c

,

f

2.0/

o

capacity0.8kJ/.V

candCf

w)uu11

dtodatathesitemaximummonthly-averagespeedisabout3.5m/s,theminimummonthly-averagespeedis2m/s.Weapproximatethewindspeedattheexitv(t)to

m/s,tisinmonth.ThespeedinrU(0xr)U()R

),(0xr)TheoftemperatureTaresettobewheref(x)fromthepermafrostofdo-mainofsolutionassumethatthe3%,theairoutsidetunnelis

0

,amplitudeis

B=120foroffirstsolveR=Rothefirsttypeofthatisassumethat3%

0

findthat,theheatflowwillhaveinrangeofradiusbetween5andinthesurroundingthewillbecooleritwillaffectedbygeothermalappoximatelythattheboundaryR=Roisthesecondtypeofthatis,thatfromcalculationtotheoffirstexcavationthefirstofboundaryvalue,isthegradientonR=RoofConsideringsurroundingrocktoduringperiodofconstruction,calculatefromJanuaryanditerateofunderboundary.lettheboundaryvarysolvebycanbeprovedthesolutionwillnottheofaftermanytimeelapses).4.2CalculatedresultsFigures3and4showtheofmonthly-averagetemperaturesonofwallalongwiththevariationsatentry.Figs.5and6thepermafrostbeginstoformandthethawedafterpermafrostformeddifferentsections.

4.3Preliminaryconclusionthermalparametersabove,wefollowingpreliminary1)Theonthesurfacewallofapproximatelytoairatentryexit.Itwarmerthecoldandcoolerduringseasonintheinternal100mfromtheexit)ofthe.1thattheinternalonofthetunnelis℃higherinDecember,1℃higherinMarchOctober,1.6lowerinJuneandandlowerinJulythetemperatureattheentryInotherinfernaltemperatureonofwallapproximatelythetemperatureatentryexit.2)Sinceitisbythegeothermalintheinternalsurrounding,inthecentralofthe

onofwalldecreasesand1℃thatatentryexit.3thethatthesurroundingiscompact,withoutaamountalayer(asPUwithofmand

=0.0216℃,F(xiàn)BTwithofmconductivity=0.0517W/m℃,inyeartunnelconstruction,thesurroundingrockwillbegintoformpermafrostintherangeofmfromexitfirstsecondyearthewilltoformpermafrostintheof40andfromtheentryexit.Incentral,fromentrywillformtheeighthNeartheofthe,permafrostwillappearintheyears.Duringfirstsecondafterpermafrostformed,maximumofannualdepth(especiallythecentralpartoftherocksection)thereafteritdecreasesTheofannualthawedwillstablethe19-20thyearswillremaininof2-34)Ifpermafrostentirelyinsurrounding,thepermafrostwillprovidebefavourablefor.However,intheprocessofconstructionlotofinsomeofwillinseepingwaterresultinginthelinerworkwillbereportedelsewhere.

嚴(yán)寒地隧道圍巖凍狀況分的導(dǎo)熱與對(duì)換熱模何春雄吳紫汪朱林楠(中國(guó)科學(xué)院寒區(qū)旱區(qū)環(huán)境與工程研究所凍土工程國(guó)家重點(diǎn)實(shí)驗(yàn)室)(華南理工大學(xué)應(yīng)用數(shù)學(xué)系)摘

要通過(guò)對(duì)嚴(yán)寒地區(qū)隧道現(xiàn)場(chǎng)基本氣象條件的分析立了隧道內(nèi)空氣與圍巖對(duì)流換熱及固體導(dǎo)熱的綜合模型;此模型對(duì)大興安嶺西羅奇2號(hào)隧道的洞內(nèi)氣溫分布進(jìn)行了模擬計(jì)算,結(jié)果與實(shí)測(cè)值基本一致;分析預(yù)報(bào)了正在開(kāi)鑿的祁連山區(qū)大坂山隧道開(kāi)通運(yùn)營(yíng)后洞內(nèi)溫度及圍巖凍結(jié)、融化狀況關(guān)鍵詞

嚴(yán)寒地區(qū)隧道

導(dǎo)熱與對(duì)流換熱

凍結(jié)與融化在我國(guó)多年凍土分布及鄰近地區(qū),修筑了公路和鐵路隧道幾十座由于隧道開(kāi)通后洞內(nèi)水熱條件的變;,普遍引起洞內(nèi)圍巖凍結(jié),造成對(duì)襯砌層的凍脹破壞以及洞內(nèi)滲水凍結(jié)成冰凌等,嚴(yán)重影響了正常交通類(lèi)似隧道凍害問(wèn)題同樣出現(xiàn)在其他國(guó)家(蘇聯(lián)、挪威、日本等)的寒冷地區(qū)如何預(yù)測(cè)分析隧道開(kāi)挖后圍巖的凍結(jié)狀況為嚴(yán)寒地區(qū)隧道建設(shè)的設(shè)計(jì)施工及維護(hù)提供依據(jù)這是一個(gè)亟待解決的重要課題.在多年凍土及其臨近地區(qū)修筑的隧道數(shù)除進(jìn)出口部分外從多年凍土下限以下巖層穿過(guò)隧道貫通后,圍巖內(nèi)原有的穩(wěn)定熱力學(xué)條件遭到破壞,代之以阻斷熱輻射、開(kāi)放通風(fēng)對(duì)流為特征的新的熱力系統(tǒng).隧道開(kāi)通運(yùn)營(yíng)后,圍巖的凍融特性將主要由流經(jīng)洞內(nèi)的氣流的溫度、速度、氣—固交界面的換熱以及地?zé)崽荻人_定.為分析預(yù)測(cè)隧道開(kāi)通后圍巖的凍融特性Lu-nardini借用Shamsundar究圓形制冷管周?chē)馏w凍融特性時(shí)所得的近似公式,討論過(guò)圍巖的凍融特性.我們也曾就壁面溫度隨氣溫周期性變化的情況,分析計(jì)算了隧道圍巖的溫度場(chǎng)實(shí)際情況下,圍巖與氣體的溫度場(chǎng)相互作用,隧道內(nèi)氣體溫度的變化規(guī)律無(wú)法預(yù)先知道,加之洞壁表面的換熱系數(shù)在技術(shù)上很難測(cè)定而由氣溫的變化確定壁面溫度的變化難以實(shí)本文通過(guò)氣一固禍合的辦法,把氣體、固體的換熱和導(dǎo)熱作為整體來(lái)處理從洞口氣溫風(fēng)速和空氣濕度壓力及圍巖的水熱物理參數(shù)等基本數(shù)據(jù)出發(fā),計(jì)算出圍巖的溫度場(chǎng).

1學(xué)模型為確定合適的數(shù)學(xué)模型,須以現(xiàn)場(chǎng)的基本情況為依據(jù).這里我們以青海祁連山區(qū)大坂山公路隧道的基本情況為背景來(lái)加以說(shuō)明.大山隧道位于西寧一張業(yè)公路大河以南,海拔3754.78~3801.23,全長(zhǎng)m道近西南—東北走向.由于大坂山地區(qū)隧道施工現(xiàn)場(chǎng)平均氣溫為負(fù)溫的時(shí)間每年約長(zhǎng)個(gè)月之施工時(shí)間持續(xù)數(shù)年圍巖在施土過(guò)程中己經(jīng)預(yù)冷所以隧道開(kāi)通運(yùn)營(yíng)后洞內(nèi)氣體流動(dòng)的形態(tài)主要由進(jìn)出口的主導(dǎo)風(fēng)速所確定受洞內(nèi)圍巖地溫與洞外氣溫的溫度壓差的影響較小季祁連山區(qū)盛行西北風(fēng)將從隧道出曰流向進(jìn)口端,夏季雖然祁連山區(qū)盛行東偏南風(fēng)但考慮到洞口兩端氣壓差溫度壓差以及進(jìn)出口地形等因素,洞內(nèi)氣流仍將由出口北端流向進(jìn)口端另外,由于現(xiàn)場(chǎng)年平均風(fēng)速不大,可以認(rèn)為洞內(nèi)氣體將以層流為主基于以上基本情況,我們將隧道簡(jiǎn)化成圓筒,并認(rèn)為氣流、溫度等關(guān)十隧道中心線(xiàn)軸對(duì)稱(chēng),忽略氣體溫度的變化對(duì)其流速的影響,可有如下的方程其中t為時(shí)間x為軸向坐標(biāo)r為徑向坐標(biāo)U,V分別為軸向和徑向速度T為溫度,有效壓力(即空氣壓力與空氣密度之比少,V為氣運(yùn)動(dòng)粘性系數(shù),a空氣的導(dǎo)溫系數(shù)L隧道長(zhǎng)度隧道的當(dāng)量半徑D為時(shí)間長(zhǎng)(t)f

()別為圍巖的凍區(qū)域u

f

分別為凍狀態(tài)下的熱傳導(dǎo)系數(shù),uf

u分別為凍、融狀態(tài)下的體積熱容量,,t為凍、融相變界面,To為巖石凍結(jié)臨界溫度(里具體計(jì)算時(shí)取

C),L為水的相變潛熱h2求解過(guò)程由方程(知,圍巖的溫度的高低不影響氣體的流動(dòng)速度,所以我們可先解出速度,再解溫度.2.1連續(xù)性方程和動(dòng)量方程的求解由于方程((1)的前3個(gè)方程不是相互獨(dú)立的,通過(guò)將動(dòng)量方程分別對(duì)和求導(dǎo),經(jīng)整理化簡(jiǎn),我們得到關(guān)于壓力P如下橢圓型方程:于是,對(duì)方程(1)中的連續(xù)性方程和動(dòng)量方程的求解,我們按如下步驟進(jìn)行:設(shè)定速U

0

,

0

;(U入方程并求解,得P0聯(lián)立方程(的第一個(gè)和第二個(gè)方程,解得一組U1,1聯(lián)立方程((1)的第一個(gè)和第三個(gè)方程,解得一組U

2

,

2

;對(duì)((3)得到的速度進(jìn)行動(dòng)量平均,得新U

0

,

0

返回(2);按上述方法進(jìn)行迭代到前后兩次的速度值之差足夠小.0,U,V0為本時(shí)段的解,一時(shí)段求解時(shí)以此作為迭代初值2.2能量方程的整體解法如前所述圍巖與空氣的溫度場(chǎng)相互作用壁面既是氣體溫度場(chǎng)的邊界又是固體溫度場(chǎng)的邊界壁面的溫度值難以確定我們無(wú)法分別獨(dú)立地求解隧道內(nèi)的氣體溫度場(chǎng)和圍巖溫度為克服這一困難,我們利用在洞壁表面上,固體溫度等于氣體溫度這一事實(shí)隧道內(nèi)氣體的溫度和圍巖內(nèi)固體的溫度放在一起求

解,這樣壁面溫度將作為末知量被解出來(lái)只是需要注意兩點(diǎn):解流體溫度場(chǎng)時(shí)不考慮相變和解固體溫度時(shí)沒(méi)有對(duì)流項(xiàng);在洞壁表面上方程系數(shù)的光滑化另外,帶相變的溫度場(chǎng)的算法與文獻(xiàn)[相同2.3參數(shù)及初邊值的確定熱參數(shù)的確定方法用計(jì)算出海拔高度為的隧道現(xiàn)場(chǎng)的大氣壓強(qiáng),再

P

計(jì)算出現(xiàn)場(chǎng)空氣密度,其中T現(xiàn)場(chǎng)大氣的年平均絕對(duì)溫度為空氣的氣體常數(shù)記定壓比熱C,導(dǎo)熱系數(shù),空氣的動(dòng)力粘性系數(shù)P為a

CP

計(jì)算空氣的導(dǎo)溫系數(shù)和運(yùn)動(dòng)粘性系數(shù).圍巖的熱物理參數(shù)則由現(xiàn)場(chǎng)采樣測(cè)定.初邊值的確定方法:洞曰風(fēng)速取為現(xiàn)場(chǎng)觀測(cè)的各月平均風(fēng)速取卞導(dǎo)風(fēng)進(jìn)曰的相對(duì)有效氣壓為,主導(dǎo)風(fēng)出口的氣壓則取為pkL/d

2

/2

[5]

,這里k隧道內(nèi)的沿程阻力系數(shù),L為隧道長(zhǎng)度,為隧道端面的當(dāng)量直徑,為進(jìn)口端面軸向平均速度.進(jìn)出口氣溫年變化規(guī)律由現(xiàn)場(chǎng)觀測(cè)資料,用正弦曲線(xiàn)擬合,圍巖內(nèi)計(jì)算區(qū)域的邊界按現(xiàn)場(chǎng)多年凍土下限和地?zé)崽荻却_定出適當(dāng)?shù)臏囟戎祷驕囟忍荻?計(jì)算實(shí)例按以上所述的模型及計(jì)算方法們對(duì)大興安嶺西羅奇號(hào)隧道內(nèi)氣溫隨洞曰外氣溫變化的規(guī)律進(jìn)行了模擬計(jì)算驗(yàn)證,所得結(jié)果與實(shí)測(cè)值[6]相比較基本規(guī)律一致.西羅奇2號(hào)隧道是位十東北嫩林線(xiàn)的一座非多年凍土單線(xiàn)鐵路隧道,全長(zhǎng)1160,隧道近西北一東南向,高洞口位于西北向,冬季隧道主導(dǎo)風(fēng)向?yàn)槲鞅憋L(fēng).洞口海拔高度約為700月平均最高風(fēng)速約為低風(fēng)速約為1.7m/s.根據(jù)現(xiàn)場(chǎng)觀測(cè)資料,我們將進(jìn)出口氣溫?cái)M合為年平均分別為-5

0

和-

0

變化振幅分別為

0

0

的正弦曲

線(xiàn).道的當(dāng)量直徑為5.8沿程阻力系數(shù)取為由于圍巖的熱物理參數(shù)對(duì)計(jì)算洞內(nèi)氣溫的影響遠(yuǎn)比洞口的風(fēng)速壓力及氣溫的影響小得多我們這里參考使用了大坂山隧道的資料.圖1出了洞口及洞內(nèi)年平均氣溫的計(jì)算值與觀測(cè)值比較的情況從進(jìn)口到出口,兩值之差都小于0.2

0

圖出了洞內(nèi)(距進(jìn)出口l00m以上月平均氣溫的計(jì)算值與觀測(cè)值比較的情況可以看出溫度變化的基本規(guī)律完全一致造成兩值之差的主要原因是洞口氣溫年變化規(guī)律之正弦曲線(xiàn)的擬合誤差,特別是年隧道現(xiàn)場(chǎng)月平均最高氣溫不是在7份,而是在8月份.4對(duì)大坂山隧道洞內(nèi)壁溫及圍巖凍結(jié)狀況的分析預(yù)測(cè)4.1參數(shù)及初邊值按大坂山隧道的高度值3800m和年平均氣

0

,我們算得空氣密度

0.774kg/3比[7]kJ/m導(dǎo)熱系數(shù)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論