高中集合,概念數(shù)學(xué)教案_第1頁
高中集合,概念數(shù)學(xué)教案_第2頁
高中集合,概念數(shù)學(xué)教案_第3頁
高中集合,概念數(shù)學(xué)教案_第4頁
高中集合,概念數(shù)學(xué)教案_第5頁
已閱讀5頁,還剩5頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

本文格式為Word版,下載可任意編輯——高中集合,概念數(shù)學(xué)教案

目標(biāo):(1)使學(xué)生初步理解集合的概念,知道常用數(shù)集的概念及其記法

(2)使學(xué)生初步了解“屬于”關(guān)系的意義

(3)使學(xué)生初步了解有限集、無限集、空集的意義

重點(diǎn):集合的根本概念

教學(xué)過程:

1.引入

(1)章頭導(dǎo)言

(2)集合論與集合論的創(chuàng)始者康托爾(有關(guān)介紹可引用附錄中的內(nèi)容)

2.講授新課

閱讀教材,并斟酌以下問題:

(1)有那些概念?

(2)有那些符號?

(3)集合中元素的特性是什么?

(4)如何給集合分類?

(一)有關(guān)概念:

1、集合的概念

(1)對象:我們可以感覺到的客觀存在以及我們思想中的事物或抽象符號,都可以稱作對象.

(2)集合:把一些能夠確定的不同的對象看成一個(gè)整體,就說這個(gè)整體是由這些對象的全體構(gòu)成的集合.

(3)元素:集合中每個(gè)對象叫做這個(gè)集合的元素.

集合通常用大寫的拉丁字母表示,如A、B、C、……元素通常用小寫的拉丁字母表示,如a、b、c、……

2、元素與集合的關(guān)系

(1)屬于:假設(shè)a是集合A的元素,就說a屬于A,記作a∈A

(2)不屬于:假設(shè)a不是集合A的元素,就說a不屬于A,記作

要留神“∈”的方向,不能把a(bǔ)∈A顛倒過來寫.

3、集合中元素的特性

(1)確定性:給定一個(gè)集合,任何對象是不是這個(gè)集合的元素是確定的了.

(2)互異性:集合中的元素確定是不同的.

(3)無序性:集合中的元素沒有固定的依次.

4、集合分類

根據(jù)集合所含元素個(gè)屬不同,可把集合分為如下幾類:

(1)把不含任何元素的集合叫做空集Ф

(2)含有有限個(gè)元素的集合叫做有限集

(3)含有無窮個(gè)元素的集合叫做無限集

注:應(yīng)區(qū)分,,,0等符號的含義

5、常用數(shù)集及其表示方法

(1)非負(fù)整數(shù)集(自然數(shù)集):全體非負(fù)整數(shù)的集合.記作N

(2)正整數(shù)集:非負(fù)整數(shù)集內(nèi)擯棄0的集.記作N*或N+

(3)整數(shù)集:全體整數(shù)的集合.記作Z

(4)有理數(shù)集:全體有理數(shù)的集合.記作Q

(5)實(shí)數(shù)集:全體實(shí)數(shù)的集合.記作R

注:(1)自然數(shù)集包括數(shù)0.

(2)非負(fù)整數(shù)集內(nèi)擯棄0的集.記作N*或N+,Q、Z、R等其它數(shù)集內(nèi)擯棄0的集,也這樣表示,例如,整數(shù)集內(nèi)擯棄0的集,表示成Z*

課堂練習(xí):教材第5頁練習(xí)A、B

小結(jié):本節(jié)課我們了解集合論的進(jìn)展,學(xué)習(xí)了集合的概念及有關(guān)性質(zhì)

課后作業(yè):第十頁習(xí)題1-1B第3題

附錄:

集合論的誕生

集合論是德國出名數(shù)學(xué)家康托爾于19世紀(jì)末創(chuàng)立的.十七世紀(jì)數(shù)學(xué)中展現(xiàn)了一門新的分支:微積分.在之后的一二百年中這一嶄新學(xué)科獲得了飛速進(jìn)展并結(jié)出了豐碩成果.其推進(jìn)速度之快使人來不及檢查和穩(wěn)定它的理論根基.十九世紀(jì)初,大量迫切問題得到解決后,展現(xiàn)了一場重建數(shù)學(xué)根基的運(yùn)動.正是在這場運(yùn)動中,康托爾開頭探討了前人從未碰過的實(shí)數(shù)點(diǎn)集,這是集合論研究的開端.到1874年康托爾開頭一般地提出“集合”的概念.他對集合所下的定義是:把若干確定的有識別的(不管是概括的或抽象的)事物合并起來,看作一個(gè)整體,就稱為一個(gè)集合,其中各事物稱為該集合的元素.人們把康托爾于1873年12月7日給戴德金的信中最早提出集合論思想的那一天定為集合論誕生日.

康托爾的不朽功績

前蘇聯(lián)數(shù)學(xué)家柯爾莫戈洛夫評價(jià)康托爾的工作時(shí)說:“康托爾的不朽功績在于他向無窮的冒險(xiǎn)邁進(jìn)”.因而只有當(dāng)我們了解了康托爾在對無窮的研究中到底做出了些什么結(jié)論后才會真正明白他工作的價(jià)值之所在和眾多反對之聲之由來.

數(shù)學(xué)與無窮有著不解之緣,但在研究無窮的道路上卻布滿了陷阱.由于這一理由,在數(shù)學(xué)進(jìn)展的歷程中,數(shù)學(xué)家們始終以一種質(zhì)疑的眼光對付無窮,并盡可能回避這一概念.但試圖把握無限的康托爾卻大膽地踏上了這條彌漫陷阱的不歸路.他把無窮集這一詞匯引入數(shù)學(xué),從而進(jìn)入了一片未開墾的處女地,開發(fā)出一個(gè)奇異無比的新世界.對無窮集的研究使他開啟了“無限”這一數(shù)學(xué)上的潘多拉盒子.下面就讓我們來看一下盒子開啟后他釋放出的是什么.

“我們把全體自然數(shù)組成的集合簡稱作自然數(shù)集,用字母N來表示.”學(xué)過集合那一章后,同學(xué)們理應(yīng)對這句話不會感到目生.但同學(xué)們在采納這句話時(shí)根本無法想到當(dāng)年康托爾如此做時(shí)是在舉行一項(xiàng)更新無窮觀念的工作.在此以前數(shù)學(xué)家們只是把無限看作永遠(yuǎn)在延遲著的,一種變化著成長著的東西來解釋.無限永遠(yuǎn)處在構(gòu)造中,永遠(yuǎn)完成不了,是潛在的,而不是實(shí)在.這種關(guān)于無窮的觀念在數(shù)學(xué)上被稱為潛無限.十八世紀(jì)數(shù)學(xué)王子高斯就持這種觀點(diǎn).用他的話說,就是“……我反對將無窮量作為一個(gè)實(shí)體,這在數(shù)學(xué)中是從來不允許的.所謂無窮,只是一種說話的方式……”而當(dāng)康托爾把全體自然數(shù)看作一個(gè)集合時(shí),他是把無限的整體作為了一個(gè)構(gòu)造完成了的東西,這樣他就斷定了作為完成整體的無窮,這種觀念在數(shù)學(xué)上稱為實(shí)無限思想.由于潛無限思想在微積分的根基重建中已經(jīng)獲得了全面告成,康托爾的實(shí)無限思想在當(dāng)時(shí)遭到一些數(shù)學(xué)家的批評與攻擊是無足為怪的.然而康托爾并未就此止步,他以完全前所未有的方式,持續(xù)正面探討無窮.他在實(shí)無限觀念根基上進(jìn)一步得出一系列結(jié)論,創(chuàng)立了令人昂揚(yáng)的、意義特別深遠(yuǎn)的理論.這一理論使人們真正進(jìn)入了一個(gè)難以捉摸的特殊的無限世界.

最能顯示出他獨(dú)創(chuàng)性的是他對無窮集元素個(gè)數(shù)問題的研究.他提出用一一對應(yīng)準(zhǔn)那么來對比無窮集元素的個(gè)數(shù).他把元素間能建立一一對應(yīng)的集合稱為個(gè)數(shù)一致,用他自己的概念是等勢.由于一個(gè)無窮集可以與它的真子集建立一一對應(yīng)??例宛如學(xué)們很輕易察覺自然數(shù)集與正偶數(shù)集之間存在著一一對應(yīng)關(guān)系??也就是說無窮集可以與它的真子集等勢,即具有一致的個(gè)數(shù).這與傳統(tǒng)觀念“全體大于片面”相沖突.而康托爾認(rèn)為這恰恰是無窮集的特征.在此意義上,自然數(shù)集與正偶數(shù)集具有了一致的個(gè)數(shù),他將其稱為可數(shù)集.又可輕易地證明有理數(shù)集與自然數(shù)集等勢,因而有理數(shù)集也是可數(shù)集.后來當(dāng)他又證領(lǐng)略代數(shù)數(shù)集合也是可數(shù)集時(shí),一個(gè)很自然的想法是無窮集是清一色的,都是可數(shù)集.但出乎意料的是,他在1873年證領(lǐng)略實(shí)數(shù)集的勢大于自然數(shù)集.這不但意味著無理數(shù)遠(yuǎn)遠(yuǎn)多于有理數(shù),而且鮮明浩瀚的代數(shù)數(shù)與超越數(shù)相比而言也只成了滄海一粟,宛如有人描述的那樣:“點(diǎn)綴在平面上的代數(shù)數(shù)猶如夜空中的繁星;而沉沉的夜空那么由超越數(shù)構(gòu)成.”而當(dāng)他得出這一結(jié)論時(shí),人們所能找到的超越數(shù)尚僅有一兩個(gè)而已.這是何等令人恐懼的結(jié)果!然而,事情并未終結(jié).魔盒一經(jīng)開啟就無法再合上,盒中所釋放出的也不再限于可數(shù)集這一個(gè)無窮數(shù)的怪物.從上述結(jié)論中康托爾意識到無窮集之間存在著區(qū)別,有著不同的數(shù)量級,可分為不同的層次.他所要做的下一步工作是證明在全體的無窮集之間還存在著無窮多個(gè)層次.他取得了告成,并且根據(jù)無窮性有無窮種的學(xué)說,對各種不同的無窮大建立了一個(gè)完整的序列,他稱為“超限數(shù)”.他用希伯萊字母表中第一個(gè)字母“阿列夫”來表示超限數(shù)的精靈,最終他建立了關(guān)于無限的所謂阿列夫譜系

它可以無限延長下去.就這樣他創(chuàng)造了一種新的超限數(shù)理論,描繪出一幅無限王國的完整圖景.可以想見這種至今讓我們還感到有些異想天開的結(jié)論在當(dāng)時(shí)會如何震撼數(shù)學(xué)家們的心靈了.毫不夸誕地講,康托爾的關(guān)于無窮的這些理論,引起了反對派的不絕于耳的喧囂.他們大叫大喊地反對他的理論.有人諷刺集合論是一種“疾病”,有人嘲諷超限數(shù)是“霧中之霧”,稱“康托爾走進(jìn)了超限數(shù)的地獄”.作為對傳統(tǒng)觀念的一次大革新,由于他開創(chuàng)了一片全新的領(lǐng)域,提出又回復(fù)了前人不曾想到的問題,他的理論受到強(qiáng)烈地批駁是正常的.當(dāng)回頭看這段歷史時(shí),或許我們可以把對他的反對看作是對他真正具有獨(dú)創(chuàng)性成果的一種贊揚(yáng)吧.

公理化集合論的建立

集合論提出伊始,曾遭到許多數(shù)學(xué)家的強(qiáng)烈反對,康托爾本人一度成為這一強(qiáng)烈論爭的犧牲品.在猛烈的攻擊下與過度的用腦斟酌中,他得了精神分裂癥,幾次陷于精神崩潰.然而集合論前后體驗(yàn)二十余年,最終獲得了世界公認(rèn).到二十世紀(jì)初集合論已得到數(shù)學(xué)家們的贊同.數(shù)學(xué)家們?yōu)橐磺袛?shù)學(xué)成果都可建立在集合論根基上的前景而迷醉了.他們樂觀地認(rèn)為從算術(shù)公理系統(tǒng)啟程,借助集合論的概念,便可以建立起整個(gè)數(shù)學(xué)的大廈.在1900年其次次國際數(shù)學(xué)大會上,出名數(shù)學(xué)家龐加萊就曾興高采烈地宣布“……數(shù)學(xué)已被算術(shù)化了.今天,我們可以說十足的嚴(yán)格已經(jīng)達(dá)成了.”然而這種自滿的心緒并沒能持續(xù)多久.不久,集合論是有漏洞的消息急速傳遍了數(shù)學(xué)界.這就是1902年羅素得出的羅素悖論.羅素構(gòu)造了一個(gè)全體不屬于自身(即不包含自身作為元素)的集合R.現(xiàn)在問R是否屬于R?假設(shè)R屬于R,那么R得志R的定義,因此R不應(yīng)屬于自身,即R不屬于R;另一方面,假設(shè)R不屬于R,那么R不得志R的定義,因此R應(yīng)屬于自身,即R屬于R.這樣,不管何種處境都存在著沖突.這一僅涉及集合與屬于兩個(gè)最根本概念的悖論如此簡樸領(lǐng)略以致根本留不下為集合論漏洞辯護(hù)的余地.十足嚴(yán)密的數(shù)學(xué)陷入了自相沖突之中.這就是數(shù)學(xué)史上的第三次數(shù)學(xué)危機(jī).危機(jī)產(chǎn)生后,眾多數(shù)學(xué)家投入到解決危機(jī)的工作中去.1908年,策梅羅提出公理化集合論,后經(jīng)提升形成無沖突的集合論公理系統(tǒng),簡稱ZF公理系統(tǒng).原本直觀的集合概念被建立在嚴(yán)格的公理根基之上,從而制止了悖論的展現(xiàn).這就是集合論進(jìn)展的其次個(gè)階段:公理化集合論.與此相對應(yīng),在1908年以前由康托爾創(chuàng)立的集合論被稱為簡樸集合論.公理化集合論是對簡樸集合論的嚴(yán)格處理.它留存了簡樸集合論的有價(jià)值的成果并消釋了其可能存在的悖論,因而較圓滿地解決了第三次數(shù)學(xué)危機(jī).公理化集合論的建立,標(biāo)志著出名數(shù)學(xué)家希耳伯特所表述的一種激情的告成,他大聲疾呼:沒有人能把我們從康托爾為我們創(chuàng)造的樂園中趕出去.從康托爾提出集合論至今,時(shí)間已經(jīng)過去了一百多年,在這一段時(shí)間里,數(shù)學(xué)又發(fā)生了極其巨大的變化,包括對上述經(jīng)典集合論作出進(jìn)一步進(jìn)展的模糊集合論的展現(xiàn)等等.而這一切都是與康托爾的開拓性工作分不開的.因而當(dāng)現(xiàn)在回頭去看康托爾的付出時(shí),我們依舊可以引用當(dāng)時(shí)出名數(shù)學(xué)家對他的集合論的評價(jià)作為我們的總結(jié).

它是對無限最深刻的洞察,它是數(shù)學(xué)天才的最優(yōu)秀作品,是人類純智力活動的最高成就之一.

超限算術(shù)是數(shù)學(xué)思想的最驚人的產(chǎn)物,在純粹理性

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論