版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
山西省太原市重型機(jī)械學(xué)院子第中學(xué)2022年高一數(shù)學(xué)文月考試卷含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個(gè)選項(xiàng)中,只有是一個(gè)符合題目要求的1.函數(shù)的一個(gè)單調(diào)遞減區(qū)間是
A.
B.)
C.[]
D.[]參考答案:D2.如果弓形的弧所對(duì)的圓心角為,弓形的弦長(zhǎng)為4cm,則弓形的面積是:
(
)A.()cm2
B.(
)cm2C.()cm2
D.()cm2參考答案:C3.已知m、n為兩條不同的直線,α、β為兩個(gè)不同的平面,則下列命題中正確的是()A.m?α,n?α,m∥β,n∥β?α∥βB.α∥β,m?α,n?β?m∥nC.m⊥α,m⊥n?n∥αD.n∥m,n⊥α?m⊥α參考答案:D4.函數(shù)y=2sin()的單調(diào)遞增區(qū)間是(
)A.
[](kZ)
B.
[](kZ)C.
[](kZ)
D.
[](kZ)參考答案:B5.在△ABC中,若,則△ABC是()A.有一內(nèi)角為30°的直角三角形B.等腰直角三角形C.有一內(nèi)角為30°的等腰三角形D.等邊三角形參考答案:B【考點(diǎn)】GZ:三角形的形狀判斷;HP:正弦定理.【分析】由題中等式結(jié)合正弦定理,算出A=B=,由此可得△ABC是以C為直角的等腰直角三角形.【解答】解:∵,∴結(jié)合正弦定理,可得sinA=cosA,因此tanA=1,可得A=.同理得到B=∴△ABC是以C為直角的等腰直角三角形故選:B6.等比數(shù)列中,若、是方程的兩根,則的值為(
)A.2
B.
C.
D.參考答案:D略7.設(shè)函數(shù),則()A.2 B.4 C.8 D.16參考答案:B【分析】根據(jù)分段函數(shù)定義域,代入可求得,根據(jù)的值再代入即可求得的值.【詳解】因?yàn)樗运运赃xB【點(diǎn)睛】本題考查了根據(jù)定義域求分段函數(shù)的值,依次代入即可,屬于基礎(chǔ)題.8.已知,,,則,,的大小關(guān)系為(
)A.
B.
C.
D.參考答案:D由指數(shù)函數(shù)的性質(zhì)可得:,即:.本題選擇D選項(xiàng).
9.已知,,,則的大小關(guān)系是(
)A.
B.
C.
D.參考答案:A略10.△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知,,,則B=()A.45°或135° B.135° C.45° D.以上都不對(duì)參考答案:C【分析】由的度數(shù)求出的值,再利用正弦定理求出的值,由小于,得到小于,即可求出的度數(shù).【詳解】解:∵,,∴由正弦定理得:,∵,∴,則.故選:C.【點(diǎn)睛】本題主要考查了正弦定理,以及特殊角的三角函數(shù)值,熟練掌握正弦定理是解本題的關(guān)鍵,屬于基礎(chǔ)題。二、填空題:本大題共7小題,每小題4分,共28分11.(5分)若直線m被兩平行線l1:x﹣y+1=0與l2:x﹣y+3=0所截得的線段的長(zhǎng)為2,則m的傾斜角可以是①15°②30°③45°④60°⑤75°,其中正確答案的序號(hào)是
.參考答案:①⑤考點(diǎn): 直線的傾斜角.專題: 直線與圓.分析: 利用兩平行線l1與l2之間的距離公式可得d==.直線m被兩平行線所截得的線段的長(zhǎng)為2,可得直線m與兩條平行線的垂線的夾角θ滿足:,解得θ=60°.即可得出m的傾斜角.解答: ∵兩平行線l1:x﹣y+1=0與l2:x﹣y+3=0之間的距離d==.直線m被兩平行線l1:x﹣y+1=0與l2:x﹣y+3=0所截得的線段的長(zhǎng)為2,∴直線m與兩條平行線的垂線的夾角θ滿足:,解得θ=60°.∴m的傾斜角可以是15°或75°.故答案為:①⑤.點(diǎn)評(píng): 本題考查了兩條平行線之間的距離公式、直線的傾斜角與夾角,考查了推理能力與計(jì)算能力,屬于中檔題.12.設(shè)為非負(fù)實(shí)數(shù),滿足,則=
。參考答案:解析:顯然,由于,有。于是有,故13.一個(gè)數(shù)分別加上20,50,100后得到的三個(gè)數(shù)成等比數(shù)列,其公比為
.參考答案:略14.若關(guān)于x的不等式x2﹣ax+2>0的解集為R,則實(shí)數(shù)m的取值范圍是.參考答案:(﹣2,2)考點(diǎn):一元二次不等式的解法.專題:不等式的解法及應(yīng)用.分析:利用一元二次不等式的解法即可得到△<0.解答:解:∵關(guān)于x的不等式x2﹣ax+2>0的解集為R,∴△=a2﹣8<0.解得.故答案為.點(diǎn)評(píng):熟練掌握一元二次不等式的解法是解題的關(guān)鍵.15.已知數(shù)列成等差數(shù)列,成等比數(shù)列,則的值為
☆
.參考答案:16.如圖,在正方形ABCD中,E為BC邊中點(diǎn),若=λ+μ,則λ+μ=.參考答案:.【分析】利用正方形的性質(zhì)、向量三角形法則、平面向量基本定理即可得出.【解答】解:∵,∴=+=+==λ+μ,∴λ=1,.則λ+μ=.故答案為:.17.已知||=1,=(1,),(﹣)⊥,則向量a與向量的夾角為.參考答案:【考點(diǎn)】平面向量數(shù)量積的運(yùn)算.【專題】計(jì)算題;方程思想;綜合法;平面向量及應(yīng)用.【分析】求出,代入夾角公式計(jì)算.【解答】解:∵(﹣)⊥,∴(﹣)?=0,即==1,∵||==2,∴cos<>==.∴<>=.故答案為.【點(diǎn)評(píng)】本題考查了平面向量的夾角計(jì)算,向量垂直與數(shù)量積的關(guān)系,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18.某學(xué)校的平面示意圖為如下圖五邊形區(qū)域ABCDE,其中三角形區(qū)域ABE為生活區(qū),四邊形區(qū)域BCDE為教學(xué)區(qū),AB,BC,CD,DE,EA,BE為學(xué)校的主要道路(不考慮寬度).,.(1)求道路BE的長(zhǎng)度;(2)求生活區(qū)△ABE面積的最大值.
參考答案:19.
參考答案:20.(本題滿分14分)已知函數(shù)(1)求的最大值和最小值;
(2)求證:對(duì)任意,總有;(3)若函數(shù)在區(qū)間上有零點(diǎn),求實(shí)數(shù)C的取值范圍.參考答案:解:(1)圖象的對(duì)稱軸為………..1分在上是減函數(shù),在上是增函數(shù)…………………2分………4分……………….6分(2)對(duì)任意,總有,即…………………….9分(3)因?yàn)楹瘮?shù)的圖象是開口向上的拋物線,對(duì)稱軸為,函數(shù)在上有零點(diǎn)時(shí),則
即………………..12分解得………….13分所以所求實(shí)數(shù)的取值范圍是……………..14分略21.(本小題滿分8分)已知函數(shù),.(1)求函數(shù)的值域;(2)求滿足方程的的值.參考答案:當(dāng)x≤0時(shí),顯然不滿足方程,20.(本小題滿分10分)函數(shù)f(x)=x2+x-.22.已知集合A={x|1≤x<5},B={x|﹣a<x≤a+3}(1)若a=1,U=R,求?UA∩B;(2)若B∩A=B,求實(shí)數(shù)a的取值范圍.參考答案:【考點(diǎn)】集合的包含關(guān)系判斷及應(yīng)用;交、并、補(bǔ)集的混合運(yùn)算.【分析】(1)求出?UA,即可求?UA∩B;(2)若B∩A=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年數(shù)字采集卡項(xiàng)目可行性研究報(bào)告
- 購(gòu)買青貯合同范例
- 2024年合金涂層刀具項(xiàng)目可行性研究報(bào)告
- 2024年七彩圓片項(xiàng)目可行性研究報(bào)告
- 鋁板清包合同范例
- 酒店借用合同范例
- 2024至2030年玻璃纖維箱項(xiàng)目投資價(jià)值分析報(bào)告
- 2024至2030年手提式水基型滅火器項(xiàng)目投資價(jià)值分析報(bào)告
- 2024至2030年冰棗綠茶項(xiàng)目投資價(jià)值分析報(bào)告
- 公園提升施工合同范例
- 牛仔褲項(xiàng)目商業(yè)計(jì)劃書
- 建立兒童獨(dú)立性的培養(yǎng)
- GB/T 43569-2023首飾和貴金屬貴金屬及其合金的取樣
- 國(guó)開電大本科《理工英語4》機(jī)考總題庫(kù)2023年秋期考試版
- ?婦科子宮肌瘤一病一品優(yōu)質(zhì)護(hù)理匯報(bào)
- 人教版數(shù)學(xué)小學(xué)二年級(jí)上冊(cè)無紙筆測(cè)試題
- 項(xiàng)目總監(jiān)簡(jiǎn)歷模板
- 拉薩硫氧鎂凈化板施工方案
- 《公路隧道設(shè)計(jì)細(xì)則》(D70-2010 )【可編輯】
- 東南大學(xué)高數(shù)實(shí)驗(yàn)報(bào)告
- 汽車電路分析與檢測(cè)題庫(kù)帶答案解析復(fù)習(xí)題練習(xí)題
評(píng)論
0/150
提交評(píng)論