版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
長(zhǎng)風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年六安職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購(gòu)買(mǎi)!第1卷一.綜合題(共50題)1.過(guò)A(-2,3),B(2,1)兩點(diǎn)的直線的斜率是()
A.
B.
C.-2
D.2答案:B2.一元二次不等式ax2+bx+c≤0的解集是全體實(shí)數(shù)所滿(mǎn)足的條件是(
)
A.
B.
C.
D.答案:D3.有這樣一段“三段論”推理,對(duì)于可導(dǎo)函數(shù)f(x),大前提:如果f’(x0)=0,那么x=x0是函數(shù)f(x)的極值點(diǎn);小前提:因?yàn)楹瘮?shù)f(x)=x3在x=0處的導(dǎo)數(shù)值f’(0)=0,結(jié)論:所以x=0是函數(shù)f(x)=x3的極值點(diǎn).以上推理中錯(cuò)誤的原因是______錯(cuò)誤(填大前提、小前提、結(jié)論).答案:∵大前提是:“對(duì)于可導(dǎo)函數(shù)f(x),如果f'(x0)=0,那么x=x0是函數(shù)f(x)的極值點(diǎn)”,不是真命題,因?yàn)閷?duì)于可導(dǎo)函數(shù)f(x),如果f'(x0)=0,且滿(mǎn)足當(dāng)x>x0時(shí)和當(dāng)x<x0時(shí)的導(dǎo)函數(shù)值異號(hào)時(shí),那么x=x0是函數(shù)f(x)的極值點(diǎn),∴大前提錯(cuò)誤,故為:大前提.4.設(shè)O是平行四邊形ABCD的兩條對(duì)角線AC與BD的交點(diǎn),對(duì)于下列向量組:①AD與AB;②DA與BC;③CA與DC;④OD與OB.其中能作為一組基底的是______(只填寫(xiě)序號(hào)).答案:解析:由于①AD與AB不共線,③CA與DC不共線,所以都可以作為基底.②DA與BC共線,④OD與OB共線,不能作為基底.故為:①③.5.用反證法證明:已知x,y∈R,且x+y>2,則x,y中至少有一個(gè)大于1.答案:證明:用反證法,假設(shè)x,y均不大于1,即x≤1且y≤1,則x+y≤2,這與已知條件x+y>2矛盾,∴x,y中至少有一個(gè)大于1,即原命題得證.6.根據(jù)一組數(shù)據(jù)判斷是否線性相關(guān)時(shí),應(yīng)選用()
A.散點(diǎn)圖
B.莖葉圖
C.頻率分布直方圖
D.頻率分布折線圖答案:A7.設(shè)=(-2,2,5),=(6,-4,4)分別是平面α,β的法向量,則平面α,β的位置關(guān)系是()
A.平行
B.垂直
C.相交但不垂直
D.不能確定答案:B8.關(guān)于x的方程mx2+2(m+3)x+2m+14=0有兩實(shí)根,且一個(gè)大于4,一個(gè)小于4,求m的取值范圍。答案:解:令f(x)=mx2+2(m+3)x+2m+14,依題意得或,即或,解得。9.已知正方體ABCD-A1B1C1D1,點(diǎn)E,F(xiàn)分別是上底面A1C1和側(cè)面CD1的中心,求下列各式中的x,y的值:
(1)AC1=x(AB+BC+CC1),則x=______;
(2)AE=AA1+xAB+yAD,則x=______,y=______;
(3)AF=AD+xAB+yAA1,則x=______,y=______.答案:(1)根據(jù)向量加法的首尾相連法則,x=1;(2)由向量加法的三角形法則得,AE=AA1+A1E,由四邊形法則和向量相等得,A1E=12(A1B1+A1D1)=12(AB+AD);∴AE=AA1+12AB+12AD,∴x=y=12;(3)由向量加法的三角形法則得,AF=AD+DF,由四邊形法則和向量相等得,DF=12(DC+DD1)=12(AB+AA1);∴AF=AD+12AB+12AA1,∴x=y=12.10.如圖所示,AF、DE分別是⊙O、⊙O1的直徑,AD與兩圓所在的平面均垂直,AD=8.BC是⊙O的直徑,AB=AC=6,
OE∥AD.
(1)求二面角B-AD-F的大?。?/p>
(2)求直線BD與EF所成的角的余弦值.答案:(1)二面角B—AD—F的大小為45°(2)直線BD與EF所成的角的余弦值為解析:(1)∵AD與兩圓所在的平面均垂直,∴AD⊥AB,AD⊥AF,故∠BAF是二面角B—AD—F的平面角.依題意可知,ABFC是正方形,∴∠BAF=45°.即二面角B—AD—F的大小為45°;(2)以O(shè)為原點(diǎn),CB、AF、OE所在直線為坐標(biāo)軸,建立空間直角坐標(biāo)系(如圖所示),則O(0,0,0),A(0,-3,0),B(3,0,0),D(0,-3,8),E(0,0,8),F(xiàn)(0,3,0),∴=(-3,-3,8),=(0,3,-8).cos〈,〉=
==-.設(shè)異面直線BD與EF所成角為,則cos=|cos〈,〉|=.即直線BD與EF所成的角的余弦值為.11.如圖,正方體ABCD-A1B1C1D1的棱長(zhǎng)為1.
(1)求A1C與DB所成角的大??;
(2)求二面角D-A1B-C的余弦值;
(3)若點(diǎn)E在A1B上,且EB=1,求EC與平面ABCD所成角的大?。鸢福海?)如圖建立空間直角坐標(biāo)系C-xyz,則C(0,0,0),D(1,0,0),B(0,1,0),A1(1,1,1).∴DB=(-1,1,0),CA1=(1,1,1).∴cos<DB,CA1>=DB?CA1|DB|?|CA1|=02?3=0.∴A1C與DB所成角的大小為90°.(2)設(shè)平面A1BD的法向量n1=(x,y,z),則n1⊥DB,n1⊥A1B,可得-x+y=0x+z=0,∴n1=(1,1,-1).同理可求得平面A1BC的一個(gè)法向量n2=(1,0,-1),∴cos<n1,n2>=n1?n2|n1|?|n2|=26=63,∴二面角D-A1B-C的余弦值為63.(3)設(shè)n=(0,0,1)是平面ABCD的一個(gè)法向量,且CE=(22,1,22),∴cos<n,CE>=n?CE|n|?|CE|=12,∴<n,CE>=60°,∴EC與平面ABCD所成的角是30°.12.已知曲線x=3cosθy=4sinθ(θ為參數(shù),0≤θ≤π)上一點(diǎn)P,原點(diǎn)為0,直線P0的傾斜角為π4,則P點(diǎn)的坐標(biāo)是______.答案:根據(jù)題意,曲線x=3cosθy=4sinθ(θ為參數(shù),0≤θ≤π)消去參數(shù)化成普通方程,得x29+y216=1(y≥0)∵直線P0的傾斜角為π4,∴P點(diǎn)在直線y=x上,將其代入橢圓方程得x29+x216=1,解之得x=y=125(舍負(fù)),因此點(diǎn)P的坐標(biāo)為(125,125)故為:(125,125)13.用數(shù)學(xué)歸納法證明“<n(n∈N*,n>1)”時(shí),由n=k(k>1)不等式成立,推證n=k+1時(shí),左邊應(yīng)增加的項(xiàng)數(shù)是()
A.2k-1
B.2k-1
C.2k
D.2k+1答案:C14.若E,F(xiàn),G,H分別為空間四邊形ABCD四邊AB,BC,CD,DA的中點(diǎn),證明:四邊形EFGH是平行四邊形.答案:證明:∵E,F(xiàn),G,H分別為空間四邊形ABCD四邊AB,BC,CD,DA的中點(diǎn),∴EF是△ABC的中位線,∴EF∥AC,且EF=12AC.同理可證,GH∥AC,且GH=12AC,故有
EF∥GH,且EF=GH,∴四邊形EFGH是平行四邊形.15.若點(diǎn)M,A,B,C對(duì)空間任意一點(diǎn)O都滿(mǎn)足則這四個(gè)點(diǎn)()
A.不共線
B.不共面
C.共線
D.共面答案:D16.某射手射擊所得環(huán)數(shù)X的分布列為:
ξ
4
5
6
7
8
9
10
P
0.02
0.04
0.06
0.09
0.28
0.29
0.22
則此射手“射擊一次命中環(huán)數(shù)大于7”的概率為()
A.0.28
B.0.88
C.0.79
D.0.51答案:C17.(不等式選講選做題)
已知實(shí)數(shù)a、b、x、y滿(mǎn)足a2+b2=1,x2+y2=3,則ax+by的最大值為_(kāi)_____.答案:因?yàn)閍2+b2=1,x2+y2=3,由柯西不等式(a2+b2)(x2+y2)≥(ax+by)2,得3≥(ax+by)2,不且僅當(dāng)ay=bx時(shí)取等號(hào),所以ax+by的最大值為3.故為:3.18.根據(jù)如圖的框圖,寫(xiě)出打印的第五個(gè)數(shù)是______.答案:分析程序中各變量、各語(yǔ)句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是:輸出N<35時(shí),打印A值.程序在運(yùn)行過(guò)程中各變量的情況如下表示:
是否繼續(xù)循環(huán)
A
N循環(huán)前
1
1
第一圈
2×1+1=3
2
是第二圈
2×3+1=7
3
是第三圈
2×7+1=15
4
是第四圈
2×15+1=31
5
是…所以這個(gè)打印的第五個(gè)數(shù)是31.故為:3119.兩名女生,4名男生排成一排,則兩名女生不相鄰的排法共有______
種(以數(shù)字作答)答案:由題意,先排男生,再插入女生,可得兩名女生不相鄰的排法共有A44?A25=480種故為:48020.經(jīng)過(guò)點(diǎn)P(4,-2)的拋物線的標(biāo)準(zhǔn)方程為()
A.y2=-8x
B.x2=-8y
C.y2=x或x2=-8y
D.y2=x或y2=8x答案:C21.設(shè)隨機(jī)變量ξ的概率分布如表所示:
求:(l)P(ξ<1),P(ξ≤1),P(ξ<2),P(ξ≤2);
(2)P(x)=P(ξ≤x),x∈R.答案:(1)根據(jù)所給的分布列可知14+13+m+112=1,∴m=13,∴P(ξ<1)=0P(ξ≤1)=P(ξ=1)=14P(ξ<2)=P(ξ≤1)=P(ξ=1)=14P(ξ≤2)=P(ξ=1)+P(ξ=2)=14+13=712(2)根據(jù)所給的分布列和第一問(wèn)做出的結(jié)果,得到P(X)=14,(x≤1)P(X)=712,(1<X≤2)P(X)=1112,(2<x≤3)p(X)=1,(X≥3)22.函數(shù)f(x)=x2+2的單調(diào)遞增區(qū)間為
______.答案:如圖所示:函數(shù)的遞增區(qū)間是:[0,+∞)故為:[0,+∞)23.一個(gè)盒子裝有10個(gè)紅、白兩色同一型號(hào)的乒乓球,已知紅色乒乓球有3個(gè),若從盒子里隨機(jī)取出3個(gè)乒乓球,則其中含有紅色乒乓球個(gè)數(shù)的數(shù)學(xué)期望是______.答案:由題設(shè)知含有紅色乒乓球個(gè)數(shù)ξ的可能取值是0,1,2,3,P(ξ=0)=C37C310=724,P(ξ=1)=C27C13C310=2140,P(ξ=2)=C17C23C310=740,P(ξ=3)=C33C310=1120.∴Eξ=0×724+1×
2140+2×740+3×1120=910.故為:910.24.已知集合A={x|log2x<1},B={x|0<x<c,其中c>0},若A=B,則c=______.答案:集合A={x|log2x<1}={x|0<x<2},B={x|0<x<c,其中c>0},若A=B,則c=2,故為2.25.已知集合M={1,2,3},N={1,2,3,4},定義函數(shù)f:M→N.若點(diǎn)A(1,f(1))、B(2,f(2))、C(3,f(3)),△ABC的外接圓圓心為D,且
則滿(mǎn)足條件的函數(shù)f(x)有()
A.6個(gè)
B.10個(gè)
C.12個(gè)
D.16個(gè)答案:C26.由棱長(zhǎng)為a的正方體的每個(gè)面向外側(cè)作側(cè)棱為a的正四棱錐,以這些棱錐的頂點(diǎn)為頂點(diǎn)的凸多面體的全面積是______.答案:由棱長(zhǎng)為a的正方體的每個(gè)面向外側(cè)作側(cè)棱為a的正四棱錐,共可作6個(gè),得到6個(gè)頂點(diǎn),圍成一個(gè)正八面體.所作的正四棱錐的高為h′=2a2,正八面體相對(duì)的兩頂點(diǎn)的距離應(yīng)為2h′+a=1+2a正八面體的棱長(zhǎng)x滿(mǎn)足2x=(1+2)a,x=(1+22)a,每個(gè)側(cè)面的面積為34x2=34×(1+22)2a2=33+268a2,全面積是8×33+268=33+26故為:(33+26)a227.“因?yàn)閷?duì)數(shù)函數(shù)y=logax是增函數(shù)(大前提),而y=logx是對(duì)數(shù)函數(shù)(小前提),所以y=logx是增函數(shù)(結(jié)論).”上面推理的錯(cuò)誤是()
A.大前提錯(cuò)導(dǎo)致結(jié)論錯(cuò)
B.小前提錯(cuò)導(dǎo)致結(jié)論錯(cuò)
C.推理形式錯(cuò)導(dǎo)致結(jié)論錯(cuò)
D.大前提和小前提都錯(cuò)導(dǎo)致結(jié)論錯(cuò)答案:A28.點(diǎn)(2a,a-1)在圓x2+y2-2y-4=0的內(nèi)部,則a的取值范圍是()
A.-1<a<1
B.0<a<1
C.-1<a<
D.-<a<1答案:D29.設(shè)、、為實(shí)數(shù),,則下列四個(gè)結(jié)論中正確的是(
)A.B.C.且D.且答案:D解析:若,則,則.若,則對(duì)于二次函數(shù),由可得結(jié)論.30.點(diǎn)P(1,2,2)到原點(diǎn)的距離是()
A.9
B.3
C.1
D.5答案:B31.給出以下變量①吸煙,②性別,③宗教信仰,④?chē)?guó)籍,其中屬于分類(lèi)變量的有______.答案:①因?yàn)槲鼰煵皇欠诸?lèi)變量,是否吸煙才是分類(lèi)變量,其他②③④屬于分類(lèi)變量.故為:②③④.32.如圖,平面中兩條直線l1和l2相交于點(diǎn)O,對(duì)于平面上任意一點(diǎn)M,若p、q分別是M到直線l1和l2的距離,則稱(chēng)有序非負(fù)實(shí)數(shù)對(duì)(p,q)是點(diǎn)M的“距離坐標(biāo)”.已知常數(shù)p≥0,q≥0,給出下列命題:
①若p=q=0,則“距離坐標(biāo)”為(0,0)的點(diǎn)有且僅有1個(gè);
②若pq=0,且p+q≠0,則“距離坐標(biāo)”為(p,q)的點(diǎn)有且僅有2個(gè);
③若pq≠0,則“距離坐標(biāo)”為(p,q)的點(diǎn)有且僅有4個(gè).
上述命題中,正確命題的個(gè)數(shù)是()A.0B.1C.2D.3答案:①正確,此點(diǎn)為點(diǎn)O;②不正確,注意到p,q為常數(shù),由p,q中必有一個(gè)為零,另一個(gè)非零,從而可知有且僅有4個(gè)點(diǎn),這兩點(diǎn)在其中一條直線上,且到另一直線的距離為q(或p);③正確,四個(gè)交點(diǎn)為與直線l1相距為p的兩條平行線和與直線l2相距為q的兩條平行線的交點(diǎn);故選C.33.在平行四邊形ABCD中,AC與BD交于點(diǎn)O,E是線段CD的中點(diǎn),若AC=a,BD=b,則AE=______.(用a、b表示)答案:∵平行四邊形ABCD中,AC與BD交于點(diǎn)O,E是線段CD的中點(diǎn),若AC=a,BD=b,∴AE=AO+OE=12a+OD+OC2=12a+a+b4=3a4+14b.故為:34a+14b.34.已知e1
,
e2是夾角為60°的兩個(gè)單位向量,且向量a=e1+2e2,則|a|=______.答案:由題意可得e21=1,e22=1,e1?e2=12,所以a2=(e1+2e2)2=1+2+4=7,所以|a|=7,故為:735.已知函數(shù)y=f(n),滿(mǎn)足f(1)=2,且f(n+1)=3f(n),n∈N+,則
f(3)的值為_(kāi)_____.答案:∵f(1)=2,且f(n+1)=3f(n),n∈N+,∴f(2)=3f(1)=6,f(3)=f(2+1)=3f(2)=18,故為18.36.甲盒子中裝有3個(gè)編號(hào)分別為1,2,3的小球,乙盒子中裝有5個(gè)編號(hào)分別為1,2,3,4,5的小球,從甲、乙兩個(gè)盒子中各隨機(jī)取一個(gè)小球,則取出兩小球編號(hào)之積為奇數(shù)的概率為_(kāi)_____.答案:由題意知本題是一個(gè)等可能事件的概率,試驗(yàn)發(fā)生包含的事件是從兩個(gè)盒子中分別取一個(gè)小球,共有3×5=15種結(jié)果,滿(mǎn)足條件的事件是取出的兩個(gè)小球編號(hào)之積是奇數(shù),可以列舉出有(1,1),(1,3),(1,5),(3,1),(3,3),(3,5)共有6種結(jié)果,∴要求的概率是615=25.故為25.37.(本小題滿(mǎn)分10分)如圖,D、E分別是AB、AC邊上的點(diǎn),且不與頂點(diǎn)重合,已知為方程的兩根
(1)證明四點(diǎn)共圓
(2)若求四點(diǎn)所在圓的半徑答案:(1)見(jiàn)解析;(2)解析:解:(Ⅰ)如圖,連接DE,依題意在中,,由因?yàn)樗裕?四點(diǎn)C、B、D、E共圓。(Ⅱ)當(dāng)時(shí),方程的根因而,取CE中點(diǎn)G,BD中點(diǎn)F,分別過(guò)G,F做AC,AB的垂線,兩垂線交于點(diǎn)H,連接DH,因?yàn)樗狞c(diǎn)C、B、D、E共圓,所以,H為圓心,半徑為DH.,,所以,,點(diǎn)評(píng):此題考查平面幾何中的圓與相似三角形及方程等概念和性質(zhì)。注意把握判定與性質(zhì)的作用。38.已知集合{2x,x+y}={7,4},則整數(shù)x=______,y=______.答案:∵{2x,x+y}={7,4},∴2x=4x+y=7或2x=7x+y=4解得x=2y=5或x=3.5y=0.5不是整數(shù),舍去故為:2,539.若向量a⊥b,且向量a=(2,m),b=(3,1)則m=______.答案:因?yàn)橄蛄縜=(2,m),b=(3,1),又a⊥b,所以2×3+m=0,所以m=-6.故為-6.40.若向量n與直線l垂直,則稱(chēng)向量n為直線l的法向量.直線x+2y+3=0的一個(gè)法向量為()
A.(2,-1)
B.(1,-2)
C.(2,1)
D.(1,2)答案:D41.棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,=(
)
A.
B.4
C.
D.-4答案:D42.要從已編號(hào)(1~60)的60枚最新研制的某型導(dǎo)彈中隨機(jī)抽取6枚來(lái)進(jìn)行發(fā)射試驗(yàn),用每部分選取的號(hào)碼間隔一樣的系統(tǒng)抽樣方法確定所選取的6枚導(dǎo)彈的編號(hào)可能是()
A.5、10、15、20、25、30
B.3、13、23、33、43、53
C.1、2、3、4、5、6
D.2、4、8、16、32、48答案:B43.不等式:>0的解集為A.(-2,1)B.(2,+∞)C.(-2,1)∪(2,+∞)D.(-∞,-2)∪(1,+∞)答案:C解析:不等式:>0,∴,原不等式的解集為(-2,1)∪(2,+∞),選C。44.已知點(diǎn)B是點(diǎn)A(2,-3,5)關(guān)于平面xOy的對(duì)稱(chēng)點(diǎn),則|AB|=()
A.10
B.
C.
D.38答案:A45.已知變量a,b已被賦值,要交換a、b的值,應(yīng)采用的算法是()
A.a(chǎn)=b,b=a
B.a(chǎn)=c,b=a,c=b
C.a(chǎn)=c,b=a,c=a
D.c=a,a=b,b=c答案:D46.命題“若a>3,則a>5”的逆命題是______.答案:∵原命題“若a>3,則a>5”的條件是a>3,結(jié)論是a>5∴逆命題是“若a>5,則a>3”故為:若a>5,則a>347.關(guān)于直線a,b,c以及平面M,N,給出下面命題:
①若a∥M,b∥M,則a∥b
②若a∥M,b⊥M,則b⊥a
③若a∥M,b⊥M,且c⊥a,c⊥b,則c⊥M
④若a⊥M,a∥N,則M⊥N,
其中正確命題的個(gè)數(shù)為()
A.0個(gè)
B.1個(gè)
C.2個(gè)
D.3個(gè)答案:C48.應(yīng)用反證法推出矛盾的推導(dǎo)過(guò)程中要把下列哪些作為條件使用()
①結(jié)論相反的判斷,即假設(shè)
②原命題的條件
③公理、定理、定義等
④原結(jié)論
A.①②
B.①②④
C.①②③
D.②③答案:C49.極坐標(biāo)方程ρcos2θ=0表示的曲線為()
A.極點(diǎn)
B.極軸
C.一條直線
D.兩條相交直線答案:D50.已知兩定點(diǎn)F1(5,0),F(xiàn)2(-5,0),曲線C上的點(diǎn)P到F1、F2的距離之差的絕對(duì)值是8,則曲線C的方程為()A.x29-y216=1B.x216-y29=1C.x225-y236=1D.y225-x236=1答案:據(jù)雙曲線的定義知:P的軌跡是以F1(5,0),F(xiàn)2(-5,0)為焦點(diǎn),以實(shí)軸長(zhǎng)為8的雙曲線.所以c=5,a=4,b2=c2-a2=9,所以雙曲線的方程為:x216-y29=1故選B第2卷一.綜合題(共50題)1.已知定直線l及定點(diǎn)A(A不在l上),n為過(guò)點(diǎn)A且垂直于l的直線,設(shè)N為l上任意一點(diǎn),線段AN的垂直平分線交n于B,點(diǎn)B關(guān)于AN的對(duì)稱(chēng)點(diǎn)為P,求證:點(diǎn)P的軌跡為拋物線.答案:證明:如圖所示,建立平面直角坐標(biāo)系,并且連結(jié)PA,PN,NB.由題意知PB垂直平分AN,且點(diǎn)B關(guān)于AN的對(duì)稱(chēng)點(diǎn)為P,∴AN也垂直平分PB.∴四邊形PABN為菱形,∴PA=PN.∵AB⊥l,∴PN⊥l.故點(diǎn)P符合拋物線上點(diǎn)的條件:到定點(diǎn)A的距離和到定直線l的距離相等,∴點(diǎn)P的軌跡為拋物線.2.b=ac(a,b,c∈R)是a、b、c成等比數(shù)列的()A.必要非充分條件B.充分非必要條件C.充要條件D.既非充分又非必要條件答案:當(dāng)b=a=0時(shí),b=ac推不出a,x,b成等比數(shù)列成立,故不充分;當(dāng)a,b,c成等比數(shù)列且a<0,b<0,c<0時(shí),得不到b=ac故不必要.故選:D3.一個(gè)箱中原來(lái)裝有大小相同的
5
個(gè)球,其中
3
個(gè)紅球,2
個(gè)白球.規(guī)定:進(jìn)行一次操
作是指“從箱中隨機(jī)取出一個(gè)球,如果取出的是紅球,則把它放回箱中;如果取出的是白
球,則該球不放回,并另補(bǔ)一個(gè)紅球放到箱中.”
(1)求進(jìn)行第二次操作后,箱中紅球個(gè)數(shù)為
4
的概率;
(2)求進(jìn)行第二次操作后,箱中紅球個(gè)數(shù)的分布列和數(shù)學(xué)期望.答案:(1)設(shè)A1表示事件“第一次操作從箱中取出的是紅球”,B1表示事件“第一次操作從箱中取出的是白球”,A2表示事件“第二次操作從箱中取出的是紅球”,B2表示事件“第二次操作從箱中取出的是白球”.則A1B2表示事件“第一次操作從箱中取出的是紅球,第二次操作從箱中取出的是白球”.由條件概率計(jì)算公式得P(A1B2)=P(A1)P(B2|A1)=35×25=625.B1A2表示事件“第一次操作從箱中取出的是白球,第二次操作從箱中取出的是紅球”.由條件概率計(jì)算公式得P(B1A2)=P(B1)P(A2|B1)=25×45=825.A1B2+B1A2表示“進(jìn)行第二次操作后,箱中紅球個(gè)數(shù)為
4”,又A1B2與B1A2是互斥事件.∴P(A1B2+B1A2)=P(A1B2)+P(B1A2)=625+825=1425.(2)設(shè)進(jìn)行第二次操作后,箱中紅球個(gè)數(shù)為X,則X=3,4,5.P(X=3)35×35=925,P(X=4)=1425,P(X=5)=25×15=225.進(jìn)行第二次操作后,箱中紅球個(gè)數(shù)X的分布列為:進(jìn)行第二次操作后,箱中紅球個(gè)數(shù)X的數(shù)學(xué)期望EX=3×925+4×1425+5×225=9325.4.設(shè)k>1,則關(guān)于x,y的方程(1-k)x2+y2=k2-1所表示的曲線是()
A.長(zhǎng)軸在x軸上的橢圓
B.長(zhǎng)軸在y軸上的橢圓
C.實(shí)軸在x軸上的雙曲線
D.實(shí)軸在y軸上的雙曲線答案:D5.在程序語(yǔ)言中,下列符號(hào)分別表示什么運(yùn)算*;\;∧;SQR;ABS?答案:“*”表示乘法運(yùn)算;“\”表示除法運(yùn)算;“∧”表示乘方運(yùn)算;“SQR()”表示求算術(shù)平方根運(yùn)算;“ABS()”表示求絕對(duì)值運(yùn)算.6.在空間直角坐標(biāo)系中,已知點(diǎn)P(a,0,0),Q(4,1,2),且|PQ|=,則a=()
A.1
B.-1
C.-1或9
D.1或9答案:C7.在直角梯形ABCD中,已知A(-5,-10),B(15,0),C(5,10),AD是腰且垂直兩底,求頂點(diǎn)D的坐標(biāo).答案:設(shè)D(x,y),則∵DC∥AB,∴y-10x-5=0+1015+5,又∵DA⊥AB,∴y+10x+5?0+1015+5=-1.由以上方程組解得:x=-11,y=2.∴D(-11,2).8.若直線ax+by+1=0與圓x2+y2=1相離,則點(diǎn)P(a,b)的位置是()
A.在圓上
B.在圓外
C.在圓內(nèi)
D.以上都有可能答案:C9.已知,,且與垂直,則實(shí)數(shù)λ的值為()
A.±
B.1
C.-
D.答案:D10.“△ABC中,若∠C=90°,則∠A、∠B都是銳角”的否命題為()
A.△ABC中,若∠C≠90°,則∠A、∠B都不是銳角
B.△ABC中,若∠C≠90°,則∠A、∠B不都是銳角
C.△ABC中,若∠C≠90°,則∠A、∠B都不一定是銳角
D.以上都不對(duì)答案:B11.求原點(diǎn)至3x+4y+1=0的距離?答案:由原點(diǎn)坐標(biāo)為(0,0),得到原點(diǎn)到已知直線的距離d=|3?0+4?0+1|32+42=15.12.將(x+y+z)5展開(kāi)合并同類(lèi)項(xiàng)后共有______項(xiàng),其中x3yz項(xiàng)的系數(shù)是______.答案:將(x+y+z)5展開(kāi)合并同類(lèi)項(xiàng)后,每一項(xiàng)都是m?xa?yb?zc
的形式,且a+b+c=5,其中,m是實(shí)數(shù),a、b、c∈N,構(gòu)造8個(gè)完全一樣的小球模型,分成3組,每組至少一個(gè),共有分法C27種,每一組中都去掉一個(gè)小球的數(shù)目分別作為(x+y+z)5的展開(kāi)式中每一項(xiàng)中x,y,z各字母的次數(shù),小球分組模型與各項(xiàng)的次數(shù)是一一對(duì)應(yīng)的.故將(x+y+z)5展開(kāi)合并同類(lèi)項(xiàng)后共有C27=21項(xiàng).把(x+y+z)5的展開(kāi)式看成5個(gè)因式(x+y+z)的乘積形式.從中任意選3個(gè)因式,這3個(gè)因式都取x,另外的2個(gè)因式分別取y、z,相乘即得含x3yz項(xiàng),故含x3yz項(xiàng)的系數(shù)為C35=20,故為21;20.13.直線ax+2y+3=0和直線2x+ay-1=0具有相同的方向向量,則a=______.答案:∵直線ax+2y+3=0和直線2x+ay-1=0具有相同的方向向量∴兩條直線互相平行,可得a2=2a≠3-1,解之得a=±2故為:±214.給出以下四個(gè)對(duì)象,其中能構(gòu)成集合的有()
①教2011屆高一的年輕教師;
②你所在班中身高超過(guò)1.70米的同學(xué);
③2010年廣州亞運(yùn)會(huì)的比賽項(xiàng)目;
④1,3,5.A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)答案:解析:因?yàn)槲匆?guī)定年輕的標(biāo)準(zhǔn),所以①不能構(gòu)成集合;由于②③④中的對(duì)象具備確定性、互異性,所以②③④能構(gòu)成集合.故選C.15.在直角坐標(biāo)系內(nèi),坐標(biāo)軸上的點(diǎn)構(gòu)成的集合可表示為()A.{(x,y)|x=0,y≠0或x≠0,y=0}B.{(x,y)|x=0且y=0}C.{(x,y)|xy=0}D.{(x,y)|x,y不同時(shí)為零}答案:在x軸上的點(diǎn)(x,y),必有y=0;在y軸上的點(diǎn)(x,y),必有x=0,∴xy=0.∴直角坐標(biāo)系中,x軸上的點(diǎn)的集合{(x,y)|y=0},直角坐標(biāo)系中,y軸上的點(diǎn)的集合{(x,y)|x=0},∴坐標(biāo)軸上的點(diǎn)的集合可表示為{(x,y)|y=0}∪{(x,y)|x=0}={(x,y)|xy=0}.故選C.16.(不等式選講選做題)
已知實(shí)數(shù)a、b、x、y滿(mǎn)足a2+b2=1,x2+y2=3,則ax+by的最大值為_(kāi)_____.答案:因?yàn)閍2+b2=1,x2+y2=3,由柯西不等式(a2+b2)(x2+y2)≥(ax+by)2,得3≥(ax+by)2,不且僅當(dāng)ay=bx時(shí)取等號(hào),所以ax+by的最大值為3.故為:3.17.根據(jù)學(xué)過(guò)的知識(shí),試把“推理與證明”這一章的知識(shí)結(jié)構(gòu)圖畫(huà)出來(lái).答案:根據(jù)“推理與證明”這一章的知識(shí)可得結(jié)構(gòu)圖,如圖所示.18.A、B為球面上相異兩點(diǎn),則通過(guò)A、B兩點(diǎn)可作球的大圓有()A.一個(gè)B.無(wú)窮多個(gè)C.零個(gè)D.一個(gè)或無(wú)窮多個(gè)答案:如果A,B兩點(diǎn)為球面上的兩極點(diǎn)(即球直徑的兩端點(diǎn))則通過(guò)A、B兩點(diǎn)可作球的無(wú)數(shù)個(gè)大圓如果A,B兩點(diǎn)不是球面上的兩極點(diǎn)(即球直徑的兩端點(diǎn))則通過(guò)A、B兩點(diǎn)可作球的一個(gè)大圓故選:D19.關(guān)于x的方程ax+b=0,當(dāng)a,b滿(mǎn)足條件______
時(shí),方程的解集是有限集;滿(mǎn)足條件______
時(shí),方程的解集是無(wú)限集;滿(mǎn)足條件______
時(shí),方程的解集是空集.答案:關(guān)于x的方程ax+b=0,有一個(gè)解時(shí),為有限集,所以a,b滿(mǎn)足條件是:a≠0,b∈R;滿(mǎn)足條件a=0,b=0時(shí),方程有無(wú)數(shù)組解,方程的解集是無(wú)限集;滿(mǎn)足條件
a=0,b≠0
時(shí),方程無(wú)解,方程的解集是空集.故為:a≠0,b∈R;a=0,b=0;
a=0,b≠0.20.若向量a⊥b,且向量a=(2,m),b=(3,1)則m=______.答案:因?yàn)橄蛄縜=(2,m),b=(3,1),又a⊥b,所以2×3+m=0,所以m=-6.故為-6.21.無(wú)論m,n取何實(shí)數(shù)值,直線(3m-n)x+(m+2n)y-n=0都過(guò)定點(diǎn)P,則P點(diǎn)坐標(biāo)為
A.(-1,3)
B.
C.
D.答案:D22.下面為一個(gè)求20個(gè)數(shù)的平均數(shù)的程序,在橫線上應(yīng)填充的語(yǔ)句為()
A.i>20
B.i<20
C.i>=20
D.i<=20
答案:A23.若向量且與的夾角余弦為則λ等于()
A.4
B.-4
C.
D.答案:C24.給出函數(shù)f(x)的一條性質(zhì):“存在常數(shù)M,使得|f(x)|≤M|x|對(duì)于定義域中的一切實(shí)數(shù)x均成立.”則下列函數(shù)中具有這條性質(zhì)的函數(shù)是()A.y=1xB.y=x2C.y=x+1D.y=xsinx答案:根據(jù)|sinx|≤1可知|y|=|xsinx|=|x||sinx|≤|x|永遠(yuǎn)成立故選D.25.設(shè)有三個(gè)命題:“①0<12<1.②函數(shù)f(x)=log
12x是減函數(shù).③當(dāng)0<a<1時(shí),函數(shù)f(x)=logax是減函數(shù)”.當(dāng)它們構(gòu)成三段論時(shí),其“小前提”是______(填序號(hào)).答案:三段話寫(xiě)成三段論是:大前提:當(dāng)0<a<1時(shí),函數(shù)f(x)=logax是減函數(shù),小前提:0<12<1,結(jié)論:函數(shù)f(x)=log
12x是減函數(shù).其“小前提”是①.故為:①.26.設(shè)直線過(guò)點(diǎn)(0,a),其斜率為1,且與圓x2+y2=2相切,則a的值為()
A.±
B.±2
C.±2
D.±4答案:B27.如圖所示,PD⊥平面ABCD,且四邊形ABCD為正方形,AB=2,E是PB的中點(diǎn),
cos〈,〉=.
(1)建立適當(dāng)?shù)目臻g坐標(biāo)系,寫(xiě)出點(diǎn)E的坐標(biāo);
(2)在平面PAD內(nèi)求一點(diǎn)F,使EF⊥平面PCB.答案:(1)點(diǎn)E的坐標(biāo)是(1,1,1)(2)F是AD的中點(diǎn)時(shí)滿(mǎn)足EF⊥平面PCB解析:(1)如圖所示,以DA、DC、DP所在直線分別為x軸、y軸、z軸建立空間直角坐標(biāo)系,則A(2,0,0)、B(2,2,0)、C(0,2,0),設(shè)P(0,0,2m),則E(1,1,m),∴=(-1,1,m),=(0,0,2m).∴cos〈,〉==.解得m=1,∴點(diǎn)E的坐標(biāo)是(1,1,1).(2)∵F∈平面PAD,∴可設(shè)F(x,0,z).則=(x-1,-1,z-1),又=(2,0,0),=(0,2,-2)∵EF⊥平面PCB∴⊥,且⊥即∴∴,∴F點(diǎn)的坐標(biāo)為(1,0,0)即點(diǎn)F是AD的中點(diǎn)時(shí)滿(mǎn)足EF⊥平面PCB.28.已知定義在實(shí)數(shù)集上的偶函數(shù)y=f(x)在區(qū)間(0,+∞)上是增函數(shù),那么y1=f(π3),y2=f(3x2+1)和y3=f(log214)之間的大小關(guān)系為()A.y1<y3<y2B.y1<y2<y3C.y3<y1<y2D.y3<y2<y1答案:∵偶函數(shù)y=f(x)在區(qū)間(0,+∞)上是增函數(shù)∴|x|越大,函數(shù)值就越大∵|3x2+1|≥3,|log214|=2∴|3x2+1|>|log214|>π3∴y1<y3<y2故選A29.定義xn+1yn+1=1011xnyn,n∈N*為向量OPn=(xn,yn)到向量OPn+1=(xn+1,yn+1)的一個(gè)矩陣變換,其中O是坐標(biāo)原點(diǎn).已知OP1=(1,0),則OP2010的坐標(biāo)為_(kāi)_____.答案:由題意,xn+1=xnyn+1=xn+yn∴向量的橫坐標(biāo)不變,縱坐標(biāo)構(gòu)成以0為首項(xiàng),1為公差的等差數(shù)列∴OP2010的坐標(biāo)為(1,2009)故為(1,2009)30.隨機(jī)變量ξ的分布列為
ξ01xP15p310且Eξ=1.1,則p=______;x=______.答案:由15+p+310=1,得p=12.由Eξ=0×15+1×12+310x=1.1,得x=2.故為12;2.31.圓錐的側(cè)面展開(kāi)圖是一個(gè)半徑長(zhǎng)為4的半圓,則此圓錐的底面半徑為
______.答案:設(shè)圓錐的底面半徑為R,則由題意得,2πR=π×4,即R=2,故為:2.32.有四個(gè)游戲盤(pán),將它們水平放穩(wěn)后,在上面扔一顆玻璃小球,若小球落在陰影部分,則可中獎(jiǎng),小明要想增加中獎(jiǎng)機(jī)會(huì),應(yīng)選擇的游戲盤(pán)的序號(hào)______
答案:(1)游戲盤(pán)的中獎(jiǎng)概率為
38,(2)游戲盤(pán)的中獎(jiǎng)概率為
14,(3)游戲盤(pán)的中獎(jiǎng)概率為
26=13,(4)游戲盤(pán)的中獎(jiǎng)概率為
13,(1)游戲盤(pán)的中獎(jiǎng)概率最大.故為:(1).33.將一個(gè)等腰梯形繞著它的較長(zhǎng)的底邊所在的直線旋轉(zhuǎn)一周,所得的幾何體是(
)答案:B34.某企業(yè)甲、乙、丙三個(gè)生產(chǎn)車(chē)間的職工人數(shù)分別為120人,150人,180人,現(xiàn)用分層抽樣的方法抽出一個(gè)容量為n的樣本,樣本中甲車(chē)間有4人,那么此樣本的容量n=______.答案:每個(gè)個(gè)體被抽到的概率等于
4120=130,∴樣本容量n=(120+150+180)×130=15,故為:15.35.在(1+x)3+(1+x)4…+(1+x)7的展開(kāi)式中,含x項(xiàng)的系數(shù)是______.(用數(shù)字作答)答案:(1+x)3+(1+x)4…+(1+x)7的展開(kāi)式中,含x項(xiàng)的系數(shù)是C31+C41+C51+…+C71=25故為:2536.某種產(chǎn)品的廣告費(fèi)支出x與銷(xiāo)售額y(單位:萬(wàn)元)之間有如下一組數(shù)據(jù):
x24568y3040605070若y與x之間的關(guān)系符合回歸直線方程y=6.5x+a,則a的值是()A.17.5B.27.5C.17D.14答案:由表格得.x=5,.y=50.
∵y關(guān)于x的線性回歸方程為y=6.5x+a,∴50=6.5×5+a,∴a=17.5.故選A.37.下列幾種說(shuō)法正確的個(gè)數(shù)是()
①相等的角在直觀圖中對(duì)應(yīng)的角仍然相等;
②相等的線段在直觀圖中對(duì)應(yīng)的線段仍然相等;
③平行的線段在直觀圖中對(duì)應(yīng)的線段仍然平行;
④線段的中點(diǎn)在直觀圖中仍然是線段的中點(diǎn).
A.1
B.2
C.3
D.4答案:B38.函數(shù)y=ax2+1的圖象與直線y=x相切,則a=______.答案:設(shè)切點(diǎn)為(x0,y0),∵y′=2ax,∴k=2ax0=1,①又∵點(diǎn)(x0,y0)在曲線與直線上,即y0=ax20+1y0=x0,②由①②得a=14.故為14.39.如圖所示,圖中線條構(gòu)成的所有矩形中(由6個(gè)小的正方形組成),其中為正方形的概率為
______.答案:它的長(zhǎng)有10種取法,由長(zhǎng)與寬的對(duì)稱(chēng)性,得到它的寬也有10種取法;因?yàn)椋L(zhǎng)與寬相互獨(dú)立,所以得到長(zhǎng)X寬的個(gè)數(shù)有:10X10=100個(gè)即總的矩形的個(gè)數(shù)有:100個(gè)長(zhǎng)=寬的個(gè)數(shù)為:(1X1的正方形的個(gè)數(shù))+(2X2的正方形個(gè)數(shù))+(3X3的正方形個(gè)數(shù))+(4X4的正方形個(gè)數(shù))=16+9+4+1=30個(gè)即正方形的個(gè)數(shù)有:30個(gè)所以為正方形的概率是30100=0.3故為0.340.x2+(m-3)x+m=0
一個(gè)根大于1,一個(gè)根小于1,m的范圍是______.答案:設(shè)f(x)=x2+(m-3)x+m,則∵x2+(m-3)x+m=0一個(gè)根大于1,一個(gè)根小于1,∴f(1)<0∴1+(m-3)+m<0∴m<1故為m<1.41.已知頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上的拋物線被直線y=2x+1截得的弦長(zhǎng)為15,求此拋物線方程.答案:由題意可設(shè)拋物線的方程y2=2px(p≠0),直線與拋物線交與A(x1,y1),B(x2,y2)聯(lián)立方程y2=2pxy=2x+1可得,4x2+(4-2p)x+1=0則x1+x2=12p-1,x1x2=14,y1-y2=2(x1-x2)AB=(x1-x2)2+(y1-y2)2=5(x1-x2)2=5[(x1+x2)2-4x1x2
]=5(12p-1)2-5=15解得p=6或p=-2∴拋物線的方程為y2=12x或y2=-4x42.若函數(shù)y=f(x)是函數(shù)y=ax(a>0且a≠1)的反函數(shù),且y=f(x)的圖象過(guò)點(diǎn)(2,1),則f(x)=______.答案:因?yàn)楹瘮?shù)y=f(x)是函數(shù)y=ax(a>0且a≠1)的反函數(shù),且y=f(x)的圖象過(guò)點(diǎn)(2,1),所以函數(shù)y=ax經(jīng)過(guò)(1,2),所以a=2,所以函數(shù)y=f(x)=log2x.故為:log2x.43.如圖,平面中兩條直線l1和l2相交于點(diǎn)O,對(duì)于平面上任意一點(diǎn)M,若p、q分別是M到直線l1和l2的距離,則稱(chēng)有序非負(fù)實(shí)數(shù)對(duì)(p,q)是點(diǎn)M的“距離坐標(biāo)”.已知常數(shù)p≥0,q≥0,給出下列命題:
①若p=q=0,則“距離坐標(biāo)”為(0,0)的點(diǎn)有且僅有1個(gè);
②若pq=0,且p+q≠0,則“距離坐標(biāo)”為(p,q)的點(diǎn)有且僅有2個(gè);
③若pq≠0,則“距離坐標(biāo)”為(p,q)的點(diǎn)有且僅有4個(gè).
上述命題中,正確命題的個(gè)數(shù)是()A.0B.1C.2D.3答案:①正確,此點(diǎn)為點(diǎn)O;②不正確,注意到p,q為常數(shù),由p,q中必有一個(gè)為零,另一個(gè)非零,從而可知有且僅有4個(gè)點(diǎn),這兩點(diǎn)在其中一條直線上,且到另一直線的距離為q(或p);③正確,四個(gè)交點(diǎn)為與直線l1相距為p的兩條平行線和與直線l2相距為q的兩條平行線的交點(diǎn);故選C.44.為了調(diào)查甲、乙兩個(gè)網(wǎng)站受歡迎的程度,隨機(jī)選取了14天,統(tǒng)計(jì)上午8:00-10:00間各自的點(diǎn)擊量,得如下所示的統(tǒng)計(jì)圖,根據(jù)統(tǒng)計(jì)圖:
(1)甲、乙兩個(gè)網(wǎng)站點(diǎn)擊量的極差,中位數(shù)分別是多少?
(2)甲網(wǎng)站點(diǎn)擊量在[10,40]間的頻率是多少?(結(jié)果用分?jǐn)?shù)表示)
(3)甲、乙兩個(gè)網(wǎng)站哪個(gè)更受歡迎?并說(shuō)明理由。答案:解:(1)甲網(wǎng)站的極差為73-8=65,乙網(wǎng)站的極差為71-5=66;甲網(wǎng)站的中位數(shù)是56.5,乙網(wǎng)站的中位數(shù)是36.5。(2)甲網(wǎng)站點(diǎn)擊量在[10,40]間的頻率是;(3)甲網(wǎng)站的點(diǎn)擊量集中在莖葉圖的下方,而乙網(wǎng)站的點(diǎn)擊量集中在莖葉圖的上方,從數(shù)據(jù)的分布情況來(lái)看,甲網(wǎng)站更受歡迎。45.已知△ABC的三個(gè)頂點(diǎn)A(-2,-1)、B(1,3)、C(2,2),則△ABC的重心坐標(biāo)為_(kāi)_____.答案:設(shè)△ABC的重心坐標(biāo)為(x,y),則有三角形的重心坐標(biāo)公式可得x=-2+1+23=13,y=-1+3+23=43,故△ABC的重心坐標(biāo)為(13,43),故為(13,43).46.設(shè)O是平行四邊形ABCD的兩條對(duì)角線AC與BD的交點(diǎn),對(duì)于下列向量組:①AD與AB;②DA與BC;③CA與DC;④OD與OB.其中能作為一組基底的是______(只填寫(xiě)序號(hào)).答案:解析:由于①AD與AB不共線,③CA與DC不共線,所以都可以作為基底.②DA與BC共線,④OD與OB共線,不能作為基底.故為:①③.47.“sinx=siny”是“x=y”的()A.充要條件B.充分不必要條件C.必要不充分條件D.既不充分也不必要條件答案:∵“sinx=siny”不能推出“x=y”,例如sin30°=sin390°,但30°≠390°,即充分性不成立;反過(guò)來(lái),若“x=y”,一定有“sinx=siny”,即必要性成立;∴“sinx=siny”是“x=y”的必要不充分條件.故選C.48.已知兩組樣本數(shù)據(jù)x1,x2,…xn的平均數(shù)為h,y1,y2,…ym的平均數(shù)為k,則把兩組數(shù)據(jù)合并成一組以后,這組樣本的平均數(shù)為()
A.
B.
C.
D.答案:B49.已知向量a=(1,1)與b=(2,3),用坐標(biāo)表示2a+b為_(kāi)_____.答案:根據(jù)題意,a=(1,1)與b=(2,3),則2a+b=2(1,1)+(2,3)=(4,5);故為(4,5).50.把函數(shù)y=4x的圖象按平移到F′,F′的函數(shù)解析式為y=4x-2-2,則向量的坐標(biāo)等于_____答案:(2,-2)解析:把函數(shù)y=4x的圖象按平移到F′,F′的函數(shù)解析式為y=4x-2-2,則向量的坐標(biāo)等于_____第3卷一.綜合題(共50題)1.(1+2x)7的展開(kāi)式中第4項(xiàng)的系數(shù)是______
(用數(shù)字作答)答案:(1+2x)7的展開(kāi)式的通項(xiàng)為T(mén)r+1=Cr7?(2x)r∴(1+2x)7的展開(kāi)式中第4項(xiàng)的系數(shù)是C37?23=280,故為:280.2.某種產(chǎn)品的廣告費(fèi)支出x與銷(xiāo)售額y(單位:萬(wàn)元)之間有如下一組數(shù)據(jù):
x24568y3040605070若y與x之間的關(guān)系符合回歸直線方程y=6.5x+a,則a的值是()A.17.5B.27.5C.17D.14答案:由表格得.x=5,.y=50.
∵y關(guān)于x的線性回歸方程為y=6.5x+a,∴50=6.5×5+a,∴a=17.5.故選A.3.直線x3+y4=t被兩坐標(biāo)軸截得的線段長(zhǎng)度為1,則t的值是
______.答案:令y=0,得:x=3t;令x=0,得:y=4t,所以被兩坐標(biāo)軸截得的線段長(zhǎng)度為(3t)2+(4t)2=|5t|=1所以t=±15故為±154.為提高信息在傳輸中的抗干擾能力,通常在原信息中按一定規(guī)則加入相關(guān)數(shù)據(jù)組成傳輸信息.設(shè)定原信息為a0a1a2,ai∈{0,1}(i=0,1,2),傳輸信息為h0a0a1a2h1,其中h0=a0⊕a1,h1=h0⊕a2,⊕運(yùn)算規(guī)則為:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0,例如原信息為111,則傳輸信息為01111.傳輸信息在傳輸過(guò)程中受到干擾可能導(dǎo)致接收信息出錯(cuò),則下列接收信息一定有誤的是()A.11010B.01100C.10111D.00011答案:A選項(xiàng)原信息為101,則h0=a0⊕a1=1⊕0=1,h1=h0⊕a2=1⊕1=0,所以傳輸信息為11010,A選項(xiàng)正確;B選項(xiàng)原信息為110,則h0=a0⊕a1=1⊕1=0,h1=h0⊕a2=0⊕0=0,所以傳輸信息為01100,B選項(xiàng)正確;C選項(xiàng)原信息為011,則h0=a0⊕a1=0⊕1=1,h1=h0⊕a2=1⊕1=0,所以傳輸信息為10110,C選項(xiàng)錯(cuò)誤;D選項(xiàng)原信息為001,則h0=a0⊕a1=0⊕0=0,h1=h0⊕a2=0⊕1=1,所以傳輸信息為00011,D選項(xiàng)正確;故選C.5.下列命題錯(cuò)誤的是(
)A.命題“若,則中至少有一個(gè)為零”的否定是:“若,則都不為零”。B.對(duì)于命題,使得;則是,均有。C.命題“若,則方程有實(shí)根”的逆否命題為:“若方程無(wú)實(shí)根,則”。D.“”是“”的充分不必要條件。答案:A解析:命題的否定是只否定結(jié)論,∴選A.6.已知x1>0,x1≠1,且xn+1=xn(x2n+3)3x2n+1,(n=1,2,…).試證:數(shù)列{xn}或者對(duì)任意自然數(shù)n都滿(mǎn)足xn<xn+1,或者對(duì)任意自然數(shù)n都滿(mǎn)足xn>xn+1.答案:證:首先,xn+1-xn=xn(x2n+3)3x2n+1-xn=2xn(1-x2n)3x2n+1,由于x1>0,由數(shù)列{xn}的定義可知xn>0,(n=1,2,…)所以,xn+1-xn與1-xn2的符號(hào)相同.①假定x1<1,我們用數(shù)學(xué)歸納法證明1-xn2>0(n∈N)顯然,n=1時(shí),1-x12>0設(shè)n=k時(shí)1-xk2>0,那么當(dāng)n=k+1時(shí)1-x2k+1=1-[xk(x2k+3)3x2k+1]2=(1-x2k)3(3x2k+1)2>0,因此,對(duì)一切自然數(shù)n都有1-xn2>0,從而對(duì)一切自然數(shù)n都有xn<xn+1②若x1>1,當(dāng)n=1時(shí),1-x12<0;設(shè)n=k時(shí)1-xk2<0,那么當(dāng)n=k+1時(shí)1-x2k+1=1-[xk(x2k+3)3x2k+1]2=(1-x2k)3(3x2k+1)2<0,因此,對(duì)一切自然數(shù)n都有1-xn2<0,從而對(duì)一切自然數(shù)n都有xn>xn+17.已知正數(shù)x,y,且x+4y=1,則xy的最大值為()
A.
B.
C.
D.答案:C8.已知集合A={2,x,y},B={2x,y2,2}且x,y≠0,若A=B,則實(shí)數(shù)x+y的值______.答案:因?yàn)榧螦={2,x,y},B={2x,y2,2}且x,y≠0,所以x=y2y=2x,解得x=14y=12,所以x+y=34.故為:34.9.設(shè)向量a,b的夾角為60°的單位向量,則向量2a+b的模為()A.3B.7C.5D.3答案:|2a+b|=(2a+b)2=4a2+4a?b+b2=4+4×1×1×12+1=7故向量2a+b的模為7故選B10.點(diǎn)P(4,-2)與圓x2+y2=4上任一點(diǎn)連線的中點(diǎn)軌跡方程是______.答案:設(shè)圓上任意一點(diǎn)為A(x1,y1),AP中點(diǎn)為(x,y),則x=x1+42y=y1-22,∴x1=2x-4y1=2y+2代入x2+y2=4得(2x-4)2+(2y+2)2=4,化簡(jiǎn)得(x-2)2+(y+1)2=1.故為:(x-2)2+(y+1)2=111.用反證法證明命題“三角形中最多只有一個(gè)內(nèi)角是鈍角”時(shí),則假設(shè)的內(nèi)容是()
A.三角形中有兩個(gè)內(nèi)角是鈍角
B.三角形中有三個(gè)內(nèi)角是鈍角
C.三角形中至少有兩個(gè)內(nèi)角是鈍角
D.三角形中沒(méi)有一個(gè)內(nèi)角是鈍角答案:C12.巳知橢圓{xn}與{yn}的中心在坐標(biāo)原點(diǎn),長(zhǎng)軸在x軸上,離心率為32,且G上一點(diǎn)到G的兩個(gè)焦點(diǎn)的距離之和為12,則橢圓G的方程為_(kāi)_____.答案:由題設(shè)知e=32,2a=12,∴a=6,b=3,∴所求橢圓方程為x236+y29=1.:x236+y29=1.13.已知直線l:x=2+ty=1-at(t為參數(shù)),與橢圓x2+4y2=16交于A、B兩點(diǎn).
(1)若A,B的中點(diǎn)為P(2,1),求|AB|;
(2)若P(2,1)是弦AB的一個(gè)三等分點(diǎn),求直線l的直角坐標(biāo)方程.答案:(1)直線l:x=2+ty=1-at代入橢圓方程,整理得(4a2+1)t2-4(2a-1)t-8=0設(shè)A、B對(duì)應(yīng)的參數(shù)分別為t1、t2,則t1+t2=4(2a-1)4a2+1,t1t2=-84a2+1,∵A,B的中點(diǎn)為P(2,1),∴t1+t2=0解之得a=12,∴t1t2=-4,∵|AP|=12+(-12)2|t1|=52|t1|,|BP|=52|t2|,∴|AB|=52(|t1|+|t1|)=52×(t1+t2)2-4t1t2=25,(2)P(2,1)是弦AB的一個(gè)三等分點(diǎn),∴|AP|=12|PB|,∴1+a2|t1|=21+a2|t2|,?t1=-2t2,∴t1+t2=-t2=4(2a-1)4a2+1,t1t2=-2t
22=-84a2+1,∴t
22=44a2+1,∴16(2a-1)2(4a2+1)2=44a2+1,解得a=4±76,∴直線l的直角坐標(biāo)方程y-1=4±76(x-2).14.已知一個(gè)四棱錐的三視圖如圖所示,則該四棱錐的體積是______.答案:因?yàn)槿晥D復(fù)原的幾何體是正四棱錐,底面邊長(zhǎng)為2,高為1,所以四棱錐的體積為13×2×2×1=43.故為:43.15.平面向量a與b的夾角為,若a=(2,0),|b|=1,則|a+2b|=()
A.
B.2
C.4
D.12答案:B16.擬定從甲地到乙地通話m分鐘的電話費(fèi)由f(m)=1.06(0.50×[m]+1)給出,其中m>0,[m]是大于或等于m的最小整數(shù)(例如[3]=3,[3.7]=4,[3.1]=4),則從甲地到乙地通話時(shí)間為5.5分鐘的話費(fèi)為()A.3.71B.3.97C.4.24D.4.77C答案:由[m]是大于或等于m的最小整數(shù)可得[5.5]=6.所以f(5.5)=1.06×(0.50×[5.5]+1)=1.06×4=4.24.故選:C.17.已知函數(shù)y=f(n),滿(mǎn)足f(1)=2,且f(n+1)=3f(n),n∈N+,則
f(3)的值為_(kāi)_____.答案:∵f(1)=2,且f(n+1)=3f(n),n∈N+,∴f(2)=3f(1)=6,f(3)=f(2+1)=3f(2)=18,故為18.18.由直角△ABC勾上一點(diǎn)D作弦AB的垂線交弦于E,交股的延長(zhǎng)線于F,交外接圓于G,求證:EG為EA和EB的比例中項(xiàng),又為ED和EF的比例中項(xiàng).
答案:證明:連接GA、GB,則△AGB也是一個(gè)直角三角形,因?yàn)镋G為直角△AGB的斜邊AB上的高,所以,EG為EA和EB的比例中項(xiàng),即EG2=EA?EB∵∠AFE=∠ABC,∴直角△AEF∽直角△DEB,EAEF=EDEB即EA?EB=ED?EF.又∵EG2=EA?EB,∴EG2=ED?EF(等量代換),故EG也是ED和EF的比例中項(xiàng).19.如圖程序框圖箭頭a指向①處時(shí),輸出
s=______.箭頭a指向②處時(shí),輸出
s=______.答案:程序在運(yùn)行過(guò)程中各變量的情況如下表所示:(1)當(dāng)箭頭a指向①時(shí),是否繼續(xù)循環(huán)
S
i循環(huán)前/0
1第一圈
是
1
2第二圈
是
2
3第三圈
是
3
4第四圈
是
4
5第五圈
是
5
6第六圈
否故最終輸出的S值為5,即m=5;(2)當(dāng)箭頭a指向②時(shí),是否繼續(xù)循環(huán)
S
i循環(huán)前/0
1第一圈
是
1
2第二圈
是
1+2
3第三圈
是
1+2+3
4第四圈
是
1+2+3+4
5第五圈
是
1+2+3+4+5
6第六圈
否故最終輸出的S值為1+2+3+4+5=15;則n=15.故為:5,15.20.選修4-4:坐標(biāo)系與參數(shù)方程
已知直線l:x=m+tcosαy=tsinα(t為參數(shù))經(jīng)過(guò)橢圓C:x=2cosφy=3sinφ(φ為參數(shù))的左焦點(diǎn)F.
(Ⅰ)求m的值;
(Ⅱ)設(shè)直線l與橢圓C交于A、B兩點(diǎn),求|FA|?|FB|的最大值和最小值.答案:(Ⅰ)將橢圓C的參數(shù)方程化為普通方程,得x24+y23=1.a(chǎn)=2,b=3,c=1,則點(diǎn)F坐標(biāo)為(-1,0).l是經(jīng)過(guò)點(diǎn)(m,0)的直線,故m=-1.…(4分)(Ⅱ)將l的參數(shù)方程代入橢圓C的普通方程,并整理,得(3cos2α+4sin2α)t2-6tcosα-9=0.設(shè)點(diǎn)A,B在直線參數(shù)方程中對(duì)應(yīng)的參數(shù)分別為t1,t2,則|FA|?|FB|=|t1t2|=93cos2α+4sin2α=93+sin2α.當(dāng)sinα=0時(shí),|FA|?|FB|取最大值3;當(dāng)sinα=±1時(shí),|FA|?|FB|取最小值94.…(10分)21.下列語(yǔ)句不屬于基本算法語(yǔ)句的是()
A.賦值語(yǔ)句
B.運(yùn)算語(yǔ)句
C.條件語(yǔ)句
D.循環(huán)語(yǔ)句答案:B22.命題“若a,b都是奇數(shù),則a+b是偶數(shù)”的逆否命題是()A.若a+b不是偶數(shù),則a,b都不是奇數(shù)B.若a+b不是偶數(shù),則a,b不都是奇數(shù)C.若a+b是偶數(shù),則a,b都是奇數(shù)D.若a+b是偶數(shù),則a,b不都是奇數(shù)答案:“a,b都是奇數(shù)”的否定是“a,b不都是奇數(shù)”,“a+b是偶數(shù)”的否定是“a+b不是偶數(shù)”,故命題“若a,b都是奇數(shù),則a+b是偶數(shù)”的逆否命題是“若a+b不是偶數(shù),則a,b不都是奇數(shù)”.故選B.23.若|a|=3、|b|=4,且a⊥b,則|a+b|=______.答案:∵|a|=3,|b|=4,且a⊥b,∴|a+b|=a2+2a?b+b2=9+0+16=5.故為:5.24.已知向量a=(0,-1,1),b=(4,1,0),|λa+b|=57且λ>0,則λ=______.答案:∵λa+b=λ(0,-1,1)+(4,1,0)=(4,1-λ,λ),|λa+b|=57,∴42+(1-λ)2+λ2=57,化為λ2-λ-20=0,又λ>0,解得λ=5.故為5.25.設(shè)A、B為兩個(gè)事件,若事件A和B同時(shí)發(fā)生的概率為310,在事件A發(fā)生的條件下,事件B發(fā)生的概率為12,則事件A發(fā)生的概率為_(kāi)_____.答案:根據(jù)題意,得∵P(A|B)=P(AB)P(B),P(AB)=310,P(A|B)=12∴12=310P(B),解得P(B)=31012=35故為:3526.設(shè)向量a=(1,0),b=(sinθ,cosθ),0≤θ≤π,則|a+b|的最大值為
______.答案:|a|=1因?yàn)閨b|=1,所以|a+b|2=a2+b2+2a?b=2+2sinθ因?yàn)?≤θ≤π,所以0≤sinθ≤1,所以2+2sinθ≤4,|a+b|≤2故為:227.因?yàn)闃颖臼强傮w的一部分,是由某些個(gè)體所組成的,盡管對(duì)總體具有一定的代表性,但并不等于總體,為什么不把所有個(gè)體考查一遍,使樣本就是總體?答案:如果樣本就是總體,抽樣調(diào)查就變成普查了,盡管這樣確實(shí)反映了實(shí)際情況,但不是統(tǒng)計(jì)的基本思想,其操作性、可行性、人力、物力等方面,都會(huì)有制約因素存在,何況有些調(diào)查是破壞性的,如考查一批玻璃的抗碎能力,燈泡的使用壽命等,普查就全破壞了.28.在空間直角坐標(biāo)系中,點(diǎn)(-2,1,4)關(guān)于x軸的對(duì)稱(chēng)點(diǎn)的坐標(biāo)為()
A.(-2,1,-4)
B.(-2,-1,-4)
C.(2,1,-4)
D.(2,-1,4)答案:B29.電視機(jī)的使用壽命顯像管開(kāi)關(guān)的次數(shù)有關(guān).某品牌電視機(jī)的顯像管開(kāi)關(guān)了10000次還能繼續(xù)使用的概率是0.96,開(kāi)關(guān)了15000次后還能繼續(xù)使用的概率是0.80,則已經(jīng)開(kāi)關(guān)了10000次的電視機(jī)顯像管還能繼續(xù)使用到15000次的概率是______.答案:記“開(kāi)關(guān)了10000次還能繼續(xù)使用”為事件A,記“開(kāi)關(guān)了15000次后還能繼續(xù)使用”為事件B,根據(jù)題意,易得P(A)=0.96,P(B)=0.80,則P(A∩B)=0.80,由條件概率的計(jì)算方法,可得P=P(A∩B)P(A)=0.800.96=56;故為56.30.雙曲線的中心在坐標(biāo)原點(diǎn),離心率等于2,一個(gè)焦點(diǎn)的坐標(biāo)為(2,0),則此雙曲線的漸近線方程是______.答案:∵離心率等于2,一個(gè)焦點(diǎn)的坐標(biāo)為(2,0),∴ca=2,
c=2且焦點(diǎn)在x軸上,∴a=1∵c2=a2+b2∴b2=3∴b=3.所以雙曲線的漸進(jìn)方程為y=±3x.故為y=±3x31.柱坐標(biāo)(2,,5)對(duì)應(yīng)的點(diǎn)的直角坐標(biāo)是
。答案:()解析:∵柱坐標(biāo)(2,,5),且,2,∴對(duì)應(yīng)直角坐標(biāo)是()32.如圖所示,設(shè)k1,k2,k3分別是直線l1,l2,l3的斜率,則()
A.k1<k2<k3
B.k3<k1<k2
C.k3<k2<k1
D.k1<k3<k2
答案:C33.畫(huà)出《數(shù)學(xué)3》第一章“算法初步”的知識(shí)結(jié)構(gòu)圖.答案:《數(shù)學(xué)3》第一章“算法初步”的知識(shí)包括:算法、程序框圖、算法的三種基本邏輯結(jié)構(gòu)和框圖表示、基本算法語(yǔ)句.算法的三種基本邏輯結(jié)構(gòu)和框圖表示就是順序結(jié)構(gòu)、條件結(jié)構(gòu)、循環(huán)結(jié)構(gòu),基本算法語(yǔ)句是指輸入語(yǔ)句、輸出語(yǔ)句、賦值語(yǔ)句、條件語(yǔ)句和循環(huán)語(yǔ)句.故《數(shù)學(xué)3》第一章“算法初步”的知識(shí)結(jié)構(gòu)圖示意圖如下:34.如圖所示,已知PA切圓O于A,割線PBC交圓O于B、C,PD⊥AB于D,PD與AO的延長(zhǎng)線相交于點(diǎn)E,連接CE并延長(zhǎng)交圓O于點(diǎn)F,連接AF.
(1)求證:B,C,E,D四點(diǎn)共圓;
(2)當(dāng)AB=12,tan∠EAF=23時(shí),求圓O的半徑.答案:(1)由切割線定理PA2=PB?PC由已知易得Rt△PAD∽R(shí)t△PEA,∴PA2=PD?PE,∴PA2=PB?PC=PA2=PD?PE,又∠BPD為公共角,∴△PBD∽△PEC,∴∠BDP=∠C∴B,C,E,D四點(diǎn)共圓
(2)作OG⊥AB于G,由(1)知∠PBD=∠PEC,∵∠PBD=∠F,∴∠F=∠PEC,∴PE∥AF.∵AB=12,∴AG=6.∵PD⊥AB,∴PD∥OG.∴PE∥OG∥AF,∴∠AOG=∠EAF.在Rt△AOG中,tan∠AOG=tan∠EAF=23=6OG,∴OG=9∴R=AO=AG2+OG2
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《電磁學(xué)電磁場(chǎng)》課件
- 《奧美品牌管理價(jià)值》課件
- 2024屆山西省大同市云州區(qū)高三上學(xué)期期末考試歷史試題(解析版)
- 單位管理制度集合大全人力資源管理十篇
- 單位管理制度集粹匯編【職員管理】十篇
- 單位管理制度匯編大合集【職員管理篇】
- 單位管理制度合并匯編【人力資源管理篇】
- 單位管理制度范例匯編人力資源管理篇
- 單位管理制度呈現(xiàn)匯編員工管理篇
- 單位管理制度呈現(xiàn)大全人力資源管理篇十篇
- 2024屆湖南省長(zhǎng)沙市高三新高考適應(yīng)性考試生物試題(含答案解析)
- 少數(shù)民族介紹水族
- 2024年四川省普通高中學(xué)業(yè)水平考試(思想政治樣題)
- 精液的常規(guī)檢測(cè)課件
- 《青紗帳-甘蔗林》 課件 2024年高教版(2023)中職語(yǔ)文基礎(chǔ)模塊下冊(cè)
- 數(shù)字化課程課件
- 碳纖維氣瓶制作流程介紹課件
- 2024信息安全意識(shí)培訓(xùn)ppt課件完整版含內(nèi)容
- 沙金可行性開(kāi)采方案
- 蘇州市2023-2024學(xué)年高二上學(xué)期期末考試英語(yǔ)試卷(含答案)
- 六年級(jí)上冊(cè)必讀書(shū)目《童年》閱讀測(cè)試題(附答案)
評(píng)論
0/150
提交評(píng)論