版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
長風(fēng)破浪會有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年北京財(cái)貿(mào)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.下列說法不正確的是()A.圓柱側(cè)面展開圖是一個(gè)矩形B.圓錐的過軸的截面是等腰三角形C.直角三角形繞它的一條邊旋轉(zhuǎn)一周形成的曲面圍成的幾何體是圓錐D.圓臺平行于底面的截面是圓面答案:圓柱的側(cè)面展開圖是一個(gè)矩形,A正確,因?yàn)槟妇€長相等,得到圓錐的軸截面是一個(gè)等腰三角形,B正確,圓臺平行于底面的截面是圓面,D正確,故選C.2.已知m2+n2=1,a2+b2=2,則am+bn的最大值是()
A.1
B.
C.
D.以上都不對答案:C3.用反證法證明命題:“a,b,c,d∈R,a+b=1,c+d=1,且ac+bd>1,則a,b,c,d中至少有一個(gè)負(fù)數(shù)”時(shí)的假設(shè)為()
A.a(chǎn),b,c,d中至少有一個(gè)正數(shù)
B.a(chǎn),b,c,d全為正數(shù)
C.a(chǎn),b,c,d全都大于等于0
D.a(chǎn),b,c,d中至多有一個(gè)負(fù)數(shù)答案:C4.敘述并證明勾股定理.答案:證明:如圖左邊的正方形是由1個(gè)邊長為a的正方形和1個(gè)邊長為b的正方形以及4個(gè)直角邊分別為a、b,斜邊為c的直角三角形拼成的.右邊的正方形是由1個(gè)邊長為c的正方形和4個(gè)直角邊分別為a、b,斜邊為c的直角三角形拼成的.因?yàn)檫@兩個(gè)正方形的面積相等(邊長都是a+b),所以可以列出等式a2+b2+4×12ab=c2+4×12ab,化簡得a2+b2=c2.下面是一個(gè)錯(cuò)誤證法:勾股定理:直角三角形的兩直角邊的平方和等于斜邊的平方這一特性叫做勾股定理或勾股弦定理,又稱畢達(dá)哥拉斯定理或畢氏定理證明:作兩個(gè)全等的直角三角形,設(shè)它們的兩條直角邊長分別為a、b(b>a),斜邊長為c.再做一個(gè)邊長為c的正方形.把它們拼成如圖所示的多邊形,使E、A、C三點(diǎn)在一條直線上.過點(diǎn)Q作QP∥BC,交AC于點(diǎn)P.過點(diǎn)B作BM⊥PQ,垂足為M;再過點(diǎn)F作FN⊥PQ,垂足為N.∵∠BCA=90°,QP∥BC,∴∠MPC=90°,∵BM⊥PQ,∴∠BMP=90°,∴BCPM是一個(gè)矩形,即∠MBC=90°.∵∠QBM+∠MBA=∠QBA=90°,∠ABC+∠MBA=∠MBC=90°,∴∠QBM=∠ABC,又∵∠BMP=90°,∠BCA=90°,BQ=BA=c,∴Rt△BMQ≌Rt△BCA.同理可證Rt△QNF≌Rt△AEF.即a2+b2=c25.下列命題:
①用相關(guān)系數(shù)r來刻畫回歸的效果時(shí),r的值越大,說明模型擬合的效果越好;
②對分類變量X與Y的隨機(jī)變量的K2觀測值來說,K2越小,“X與Y有關(guān)系”可信程度越大;
③兩個(gè)隨機(jī)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對值越接近1;
其中正確命題的序號是
______.(寫出所有正確命題的序號)答案:①是由于r可能是負(fù)值,要改為|r|的值越大,說明模型擬合的效果越好,故①錯(cuò)誤,②對分類變量X與Y的隨機(jī)變量的K2觀測值來說,K2越大,“X與Y有關(guān)系”可信程度越大;故②正確③兩個(gè)隨機(jī)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對值越接近1;故③正確,故為:③6.已知空間向量a=(1,2,3),點(diǎn)A(0,1,0),若AB=-2a,則點(diǎn)B的坐標(biāo)是()A.(-2,-4,-6)B.(2,4,6)C.(2,3,6)D.(-2,-3,-6)答案:設(shè)B=(x,y,z),因?yàn)锳B=-2a,所以(x,y-1,z)=-2(1,2,3),所以:x=-2,y-1=-4,z=-6,即x=-2,y=-3,z=-6.B(-2,-3,-6).故選D.7.在數(shù)列{an}中,a1=2,an+1=λan+λn+1+(2-λ)2n(n∈N+).(Ⅰ)求a2,a3,a4,并猜想數(shù)列{an}的通項(xiàng)公式(不必證明);(Ⅱ)證明:當(dāng)λ≠0時(shí),數(shù)列{an}不是等比數(shù)列;(Ⅲ)當(dāng)λ=1時(shí),試比較an與n2+1的大小,證明你的結(jié)論.答案:(Ⅰ)∵a1=2,∴a2=λa1+λ2+2(2-λ)=λ2+4,同理可得,a3=2λ3+8,a4=3λ4+16,猜想an=(n-1)λn+2n.(Ⅱ)假設(shè)數(shù)列{an}是等比數(shù)列,則a1,a2,a3也成等比數(shù)列,∴a22=a1?a3?(λ2+4)2=2(2λ3+8)?λ4-4λ3+8λ2=0,∵λ≠0,∴λ2-4λ+8=0,即(λ-2)2+4=0,但(λ-2)2+4>0,矛盾,∴數(shù)列{an}不是等比數(shù)列.(Ⅲ)∵λ=1,∴an=(n+1)+2n,∴an-(n2+1)=2n-(n2-n+2),∵當(dāng)n=1,2,3時(shí),2n=n2-n+2,∴an=n2+1.當(dāng)n≥4時(shí),猜想2n>n2-n+2,證明如下:當(dāng)n=4時(shí),顯然2k>k2-4+2假設(shè)當(dāng)n=k≥4時(shí),猜想成立,即2k>k2-k+2,則當(dāng)n=k+1時(shí),2k+1=2?2k>2(k2-k+2),∵2(k2-k+2)-[(k+1)20-(k+1)+2]=(k-1)(k-2)>0∴2k+1>2(k2-k+2)>(k+1)2-(k+1)+2,∴當(dāng)n≥4時(shí),猜想2n>n2-n+2成立,∴當(dāng)n≥4時(shí),an>n2+1.8.寫出系數(shù)矩陣為1221,且解為xy=11的一個(gè)線性方程組是______.答案:由題意得:線性方程組為:x+2y=32x+y=3解之得:x=1y=1;故所求的一個(gè)線性方程組是x+2y=32x+y=3故為:x+2y=32x+y=3.9.用秦九韶算法求多項(xiàng)式f(x)=8x7+5x6+3x4+2x+1,當(dāng)x=2時(shí)的值.答案:根據(jù)秦九韶算法,把多項(xiàng)式改寫成如下形式f(x)=8x7+5x6+0?x5+3?x4+0?x3+0?x2+2x+1=((((((8x+5)x+0)x+3)x+0)x+0)x+2)x+1v0=8,v1=8×2+5=21v2=21×2+0=42,v3=42×2+3=87v4=87×2+0=174,v5=174×2+0=348v6=348×2+2=698,v7=698×2+1=1397.∴當(dāng)x=2時(shí),多項(xiàng)式的值為1397.10.直線x=1和函數(shù)y=f(x)的圖象的公共點(diǎn)的個(gè)數(shù)為______.答案:由函數(shù)定義知當(dāng)函數(shù)在x=1處有定義時(shí),直線x=1和函數(shù)y=f(x)的圖象的公共點(diǎn)的個(gè)數(shù)為1,若函數(shù)在x=1處有無定義時(shí),直線x=1和函數(shù)y=f(x)的圖象的公共點(diǎn)的個(gè)數(shù)為0故線x=1和函數(shù)y=f(x)的圖象的公共點(diǎn)的個(gè)數(shù)為0或1故為0或111.在復(fù)平面內(nèi),復(fù)數(shù)z=sin2+icos2對應(yīng)的點(diǎn)位于()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限答案:∵sin2>0,cos2<0,∴z=sin2+icos2對應(yīng)的點(diǎn)在第四象限,故選D.12.某單位共有老、中、青職工430人,其中青年職工160人,中年職工人數(shù)是老年職工人數(shù)的2倍.為了解職工身體狀況,現(xiàn)采用分層抽樣方法進(jìn)行調(diào)查,在抽取的樣本中有青年職工32人,則該樣本中的老年職工人數(shù)為()
A.9
B.18
C.27
D.36答案:B13.已知中心在原點(diǎn),對稱軸為坐標(biāo)軸,長半軸長與短半軸長的和為92,離心率為35的橢圓的標(biāo)準(zhǔn)方程為______.答案:由題意可得a+b=92e=ca=35a2=b2+c2,解得a2=50b2=32.∴橢圓的標(biāo)準(zhǔn)方程為x250+y232=1或y250+x232=1.故為x250+y232=1或y250+x232=1.14.若過點(diǎn)A(4,0)的直線l與曲線(x-2)2+y2=1有公共點(diǎn),則直線l的斜率的取值范圍為______.答案:設(shè)直線l的方程為y=k(x-4),即kx-y-4k=0∵直線l與曲線(x-2)2+y2=1有公共點(diǎn),∴圓心到直線l的距離小于等于半徑即|2k-4k|k2+1≤1,解得-33≤
k≤33∴直線l的斜率的取值范圍為[-33,33]故為[-33,33]15.已知△ABC的三個(gè)頂點(diǎn)為A(1,-2,5),B(-1,0,1),C(3,-4,5),則邊BC上的中線長為______.答案:∵A(1,-2,5),B(-1,0,1),C(3,-4,5),∴BC的中點(diǎn)為D(1,-2,3),∴|AD|=(1-1)2+(-2+2)2+(5-3)2=2.故為:2.16.已知|a=2,|b|=1,a與b的夾角為60°,求向量.a+2b與2a+b的夾角.答案:由題意得,a?b=2×1×12=1,∴(a+2b)?(2a+b)=2a2+5a?b+2b2=15,|a+2b|=a2+4a?b+4b2=23,|2a+b|=4a2+4a?b+b2=21,設(shè)a+2b與2a+b夾角為θ,則cosθ=(a+2b)?(2a+b)|a+2b||2a+b|=1523×21=5714,則θ=arccos571417.若矩陣滿足下列條件:①每行中的四個(gè)數(shù)所構(gòu)成的集合均為{1,2,3,4};②四列中有且只有兩列的上下兩數(shù)是相同的.則這樣的不同矩陣的個(gè)數(shù)為()
A.24
B.48
C.144
D.288答案:C18.選修4-2:矩陣與變換
已知矩陣M=0110,N=0-110.在平面直角坐標(biāo)系中,設(shè)直線2x-y+1=0在矩陣MN對應(yīng)的變換作用下得到曲線F,求曲線F的方程.答案:由題設(shè)得MN=01100-111=100-1.…(3分)設(shè)(x,y)是直線2x-y+1=0上任意一點(diǎn),點(diǎn)(x,y)在矩陣MN對應(yīng)的變換作用下變?yōu)椋▁′,y′),則有1001xy=x′y′,即x-y=x′y′,所以x=x′y=-y′…(7分)因?yàn)辄c(diǎn)(x,y)在直線2x-y+1=0上,從而2x′-(-y′)+1=0,即2x′+y′+1=0.所以曲線F的方程為2x+y+1=0.
…(10分)19.三行三列的方陣.a11a12
a13a21a22
a23a31a32
a33.中有9個(gè)數(shù)aji(i=1,2,3;j=1,2,3),從中任取三個(gè)數(shù),則它們不同行且不同列的概率是()A.37B.47C.114D.1314答案:從給出的9個(gè)數(shù)中任取3個(gè)數(shù),共有C39;從三行三列的方陣中任取三個(gè)數(shù),使它們不同行且不同列:從第一行中任取一個(gè)數(shù)有C13種方法,則第二行只能從另外兩列中的兩個(gè)數(shù)任取一個(gè)有C12種方法,第三行只能從剩下的一列中取即可有1中方法,∴共有C13×C12×C11=6.∴從三行三列的方陣中任取三個(gè)數(shù),則它們不同行且同列的概率P=6C39=114.故選C.20.參數(shù)方程(0<θ<2π)表示()
A.雙曲線的一支,這支過點(diǎn)(1,)
B.拋物線的一部分,這部分過(1,)
C.雙曲線的一支,這支過點(diǎn)(-1,)
D.拋物線的一部分,這部分過(-1,)答案:B21.若A(0,2,198),B(1,-1,58),C(-2,1,58)是平面α內(nèi)的三點(diǎn),設(shè)平面α的法向量a=(x,y,z),則x:y:z=______.答案:AB=(1,-3,-74),AC=(-2,-1,-74),α?AB=0,α?AC=0,∴x=23yz=-43y,x:y:z=23y:y:(-43y)=2:3:(-4).故為2:3:-4.22.圓心在x軸上,且過兩點(diǎn)A(1,4),B(3,2)的圓的方程為______.答案:設(shè)圓心坐標(biāo)為(m,0),半徑為r,則圓的方程為(x-m)2+y2=r2,∵圓經(jīng)過兩點(diǎn)A(1,4)、B(3,2)∴(1-m)2+42=r2(3-m)2+22=r2解得:m=-1,r2=20∴圓的方程為(x+1)2+y2=20故為:(x+1)2+y2=2023.2005年10月,我國載人航天飛船“神六”飛行獲得圓滿成功.已知“神六”飛船變軌前的運(yùn)行軌道是一個(gè)以地心為焦點(diǎn)的橢圓,飛船近地點(diǎn)、遠(yuǎn)地點(diǎn)離地面的距離分別為200公里、250公里.設(shè)地球半徑為R公里,則此時(shí)飛船軌道的離心率為______.(結(jié)果用R的式子表示)答案:(I)設(shè)橢圓的方程為x2a2+y2b2=1由題設(shè)條件得:a-c=|OA|-|OF2|=|F2A|=R+200,a+c=|OB|+|OF2|=|F2B|=R+250,解得a=225+R,c=25則此時(shí)飛船軌道的離心率為25225+R故為:25225+R.24.直線l1到l2的角為α,直線l2到l1的角為β,則cos=()
A.
B.
C.0
D.1答案:A25.如圖,△ABC中,CD=2DB,設(shè)AD=mAB+nAC(m,n為實(shí)數(shù)),則m+n=______.答案:∵CD=2DB,∴B、C、D三點(diǎn)共線,由三點(diǎn)共線的向量表示,我們易得AD=23AB+13AC,由平面向量基本定理,我們易得m=23,n=13,∴m+n=1故為:126.若一元二次方程ax2+2x+1=0有一個(gè)正根和一個(gè)負(fù)根,則有
A.a(chǎn)<0
B.a(chǎn)>0
C.a(chǎn)<-1
D.a(chǎn)>1答案:A27.直三棱柱ABC-A1B1C1中,若CA=a
CB=b
CC1=c
則A1B=()A.a(chǎn)+b-cB.a(chǎn)-b+cC.-a+b+cD.-a+b-c答案:A1B=A1A+AB=-CC1+CB-CA=-a+b-c故選D.28.如圖,已知OA、OB是⊙O的半徑,且OA⊥OB,P是線段OA上一點(diǎn),直線BP交⊙O于點(diǎn)Q,過Q作⊙O的切線交直線OA于點(diǎn)E,求證:∠OBP+∠AQE=45°.答案:證明:連接AB,則∠AQE=∠ABP,而OA=OB,所以∠ABO=45°所以∠OBP+∠AQE=∠OBP+∠ABP=∠ABO=45°29.命題“若ab=0,則a、b中至少有一個(gè)為零”的逆否命題是
______.答案:∵ab=0的否命題是ab≠0,a、b中至少有一個(gè)為零的否命題是a≠0,且b≠0,∴命題“若ab=0,則a、b中至少有一個(gè)為零”的逆否命題是“若a≠0,且b≠0,則ab≠0.”故:若a≠0,且b≠0,則ab≠0.30.P是以F1,F(xiàn)2為焦點(diǎn)的橢圓上一點(diǎn),過焦點(diǎn)F2作∠F1PF2外角平分線的垂線,垂足為M,則點(diǎn)M的軌跡是()
A.橢圓
B.圓
C.雙曲線
D.雙曲線的一支答案:B31.方程x2+(m-2)x+5-m=0的兩根都大于2,則m的取值范圍是()
A.(-5,-4]
B.(-∞,-4]
C.(-∞,-2]
D.(-∞,-5)∪(-5,-4]答案:A32.(不等式選講選做題)
已知實(shí)數(shù)a、b、x、y滿足a2+b2=1,x2+y2=3,則ax+by的最大值為______.答案:因?yàn)閍2+b2=1,x2+y2=3,由柯西不等式(a2+b2)(x2+y2)≥(ax+by)2,得3≥(ax+by)2,不且僅當(dāng)ay=bx時(shí)取等號,所以ax+by的最大值為3.故為:3.33.若直線x=1的傾斜角為α,則α()A.等于0B.等于π4C.等于π2D.不存在答案:由題意知直線的斜率不存在,故傾斜角α=π2,故選C.34.如果拋物線y2=a(x+1)的準(zhǔn)線方程是x=-3,那么這條拋物線的焦點(diǎn)坐標(biāo)是()A.(3,0)B.(2,0)C.(1,0)D.(-1,0)答案:拋物線y2=a(x+1)可由拋物線y2=ax向左平移一個(gè)單位長度得到,因?yàn)閽佄锞€y2=a(x+1)的準(zhǔn)線方程是x=-3,所以拋物線y2=ax的準(zhǔn)線方程是x=-2,且焦點(diǎn)坐標(biāo)為(2,0),那么拋物線y2=a(x+1)的焦點(diǎn)坐標(biāo)為(1,0).故選C.35.已知
p:所有國產(chǎn)手機(jī)都有陷阱消費(fèi),則¬p是()
A.所有國產(chǎn)手機(jī)都沒有陷阱消費(fèi)
B.有一部國產(chǎn)手機(jī)有陷阱消費(fèi)
C.有一部國產(chǎn)手機(jī)沒有陷阱消費(fèi)
D.國外產(chǎn)手機(jī)沒有陷阱消費(fèi)答案:C36.下面是一個(gè)算法的偽代碼.如果輸出的y的值是10,則輸入的x的值是______.答案:由題意的程序,若x≤5,y=10x,否則y=2.5x+5,由于輸出的y的值是10,當(dāng)x≤5時(shí),y=10x=10,得x=1;當(dāng)x>5時(shí),y=2.5x+5=10,得x=2,不合,舍去.則輸入的x的值是1.故為:1.37.b=ac(a,b,c∈R)是a、b、c成等比數(shù)列的()A.必要非充分條件B.充分非必要條件C.充要條件D.既非充分又非必要條件答案:當(dāng)b=a=0時(shí),b=ac推不出a,x,b成等比數(shù)列成立,故不充分;當(dāng)a,b,c成等比數(shù)列且a<0,b<0,c<0時(shí),得不到b=ac故不必要.故選:D38.已知點(diǎn)G是△ABC的重心,O是空間任一點(diǎn),若OA+OB+OC=λOG,則實(shí)數(shù)λ=______.答案:由于G是三角形ABC的重心,則有GA+GB+GC=0,OA-OG+OB-OG+OC-OG=0故OA+OB+OC=3OG又由已知OA+OB+OC=λOG故可得λ=3故為:339.在平面直角坐標(biāo)系xOy中,點(diǎn)P的坐標(biāo)為(-1,1),若取原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,則在下列選項(xiàng)中,不是點(diǎn)P極坐標(biāo)的是()
A.()
B.()
C.()
D.()答案:D40.點(diǎn)P(2,5)關(guān)于直線x+y=1的對稱點(diǎn)的坐標(biāo)是(
)。答案:(-4,-1)41.已知非零向量,若與互相垂直,則=(
)
A.
B.4
C.
D.2答案:D42.對于函數(shù)f(x),在使f(x)≤M成立的所有常數(shù)M中,我們把M的最小值稱為函數(shù)f(x)的“上確界”則函數(shù)f(x)=(x+1)2x2+1的上確界為()A.14B.12C.2D.4答案:因?yàn)閒(x)=(x+1)2x2+1=x2+2x+1x2+1=1+2xx2+1又因?yàn)閤2+1=|x|2+1≥2|x|≥2x∴2xx2+1≤1.∴f(x)≤2.即在使f(x)≤M成立的所有常數(shù)M中,M的最小值為2.故選C.43.若兩圓x2+y2=m和x2+y2+6x-8y-11=0有公共點(diǎn),則實(shí)數(shù)m的取值范圍是(
)
A.(-∞,1)
B.(121,+∞)
C.[1,121]
D.(1,121)答案:C44.用隨機(jī)數(shù)表法從100名學(xué)生(男生35人)中選20人作樣本,男生甲被抽到的可能性為()A.15B.2035C.35100D.713答案:由題意知,本題是一個(gè)等可能事件的概率,試驗(yàn)發(fā)生包含的事件是用隨機(jī)數(shù)表法從100名學(xué)生選一個(gè),共有100種結(jié)果,滿足條件的事件是抽取20個(gè),∴根據(jù)等可能事件的概率公式得到P=20100=15,故選A.45.直線y=33x繞原點(diǎn)逆時(shí)針方向旋轉(zhuǎn)30°后,所得直線與圓(x-2)2+y2=3的交點(diǎn)個(gè)數(shù)是______.答案:∵直線y=33x的斜率為33,∴此直線的傾斜角為30°,∴此直線繞原點(diǎn)逆時(shí)針方向旋轉(zhuǎn)30°后傾斜角為60°,∴此直線旋轉(zhuǎn)后的方程為y=3x,由圓(x-2)2+y2=3,得到圓心坐標(biāo)為(2,0),半徑r=3,∵圓心到直線y=3x的距離d=232=3=r,∴該直線與圓相切,則直線與圓(x-2)2+y2=3的交點(diǎn)個(gè)數(shù)是1.故為:146.三個(gè)數(shù)a=0.32,b=log20.3,c=20.3之間的大小關(guān)系是()A.a(chǎn)<c<bB.a(chǎn)<b<cC.b<a<cD.b<c<a答案:由對數(shù)函數(shù)的性質(zhì)可知:b=log20.3<0,由指數(shù)函數(shù)的性質(zhì)可知:0<a<1,c>1∴b<a<c故選C47.若平面α,β的法向量分別為(-1,2,4),(x,-1,-2),并且α⊥β,則x的值為()A.10B.-10C.12D.-12答案:∵α⊥β,∴平面α,β的法向量互相垂直∴(-1,2,4)?(x,-1,-2)=0即-1×x+(-1)×2+4×(-2)=0解得x=-10故選B.48.已知直線的參數(shù)方程為x=1+ty=3+2t.(t為參數(shù)),圓的極坐標(biāo)方程為ρ=2cosθ+4sinθ.
(I)求直線的普通方程和圓的直角坐標(biāo)方程;
(II)求直線被圓截得的弦長.答案:(I)直線的普通方程為:2x-y+1=0;圓的直角坐標(biāo)方程為:(x-1)2+(y-2)2=5(4分)(II)圓心到直線的距離d=55,直線被圓截得的弦長L=2r2-d2=4305(10分)49.為了了解某社區(qū)居民是否準(zhǔn)備收看奧運(yùn)會開幕式,某記者分別從社區(qū)的60~70歲,40~50歲,20~30歲的三個(gè)年齡段中的160,240,X人中,采用分層抽樣的方法共抽出了30人進(jìn)行調(diào)查,若60~70歲這個(gè)年齡段中抽查了8人,那么x為()
A.90
B.120
C.180
D.200答案:D50.已知點(diǎn)A(1-t,1-t,t),B(2,t,t),則A、B兩點(diǎn)距離的最小值為()
A.
B.
C.
D.2答案:A第2卷一.綜合題(共50題)1.命題“所有能被2整除的數(shù)都是偶數(shù)”的否定
是()
A.所有不能被2整除的整數(shù)都是偶數(shù)
B.所有能被2整除的整數(shù)都不是偶數(shù)
C.存在一個(gè)不能被2整除的整數(shù)是偶數(shù)
D.存在一個(gè)能被2整除的整數(shù)不是偶數(shù)答案:D2.在△ABC中,AB=2,AC=1,D為BC的中點(diǎn),則AD?BC=______.答案:AD?BC=AB+AC2?(AC-AB)=AC2-AB22=1-42=-32,故為:-32.3.搖獎器有10個(gè)小球,其中8個(gè)小球上標(biāo)有數(shù)字2,2個(gè)小球上標(biāo)有數(shù)字5,現(xiàn)搖出3個(gè)小球,規(guī)定所得獎金(元)為這3個(gè)小球上記號之和,求此次搖獎獲得獎金數(shù)額的數(shù)學(xué)期望.答案:設(shè)此次搖獎的獎金數(shù)額為ξ元,當(dāng)搖出的3個(gè)小球均標(biāo)有數(shù)字2時(shí),ξ=6;當(dāng)搖出的3個(gè)小球中有2個(gè)標(biāo)有數(shù)字2,1個(gè)標(biāo)有數(shù)字5時(shí),ξ=9;當(dāng)搖出的3個(gè)小球有1個(gè)標(biāo)有數(shù)字2,2個(gè)標(biāo)有數(shù)字5時(shí),ξ=12.所以,P(ξ=6)=C38C310=715P(ξ=9)=C28C12C310=715P(ξ=12)=C18C22C310=115Eξ=6×715+9×715+12×115=395(元)
答:此次搖獎獲得獎金數(shù)額的數(shù)字期望是395元.4.用反證法證明命題:“三角形的內(nèi)角中至少有一個(gè)不大于60度”時(shí),假設(shè)正確的是()
A.假設(shè)三內(nèi)角都不大于60度
B.假設(shè)三內(nèi)角都大于60度
C.假設(shè)三內(nèi)角至多有一個(gè)大于60度
D.假設(shè)三內(nèi)角至多有兩個(gè)大于60度答案:B5.如圖,在⊙O中,弦CD垂直于直徑AB,求證:CBCO=CDCA.答案:證明:連接AD,如圖所示:由垂徑定理得:AD=AC又∵OC=OB∴∠ADC=∠OBC=∠ACD=∠OCB∴△CAD∽△COB∴CBCO=CDCA.6.用0,1,2,3組成沒有重復(fù)數(shù)字的四位數(shù),其中奇數(shù)有()
A.8個(gè)
B.10個(gè)
C.18個(gè)
D.24個(gè)答案:A7.過點(diǎn)M(0,1)作直線,使它被兩直線l1:x-3y+10=0,l2:2x+y-8=0所截得的線段恰好被M所平分,求此直線方程.答案:設(shè)所求直線與已知直線l1,l2分別交于A、B兩點(diǎn).∵點(diǎn)B在直線l2:2x+y-8=0上,故可設(shè)B(t,8-2t).又M(0,1)是AB的中點(diǎn),由中點(diǎn)坐標(biāo)公式得A(-t,2t-6).∵A點(diǎn)在直線l1:x-3y+10=0上,∴(-t)-3(2t-6)+10=0,解得t=4.∴B(4,0),A(-4,2),故所求直線方程為:x+4y-4=0.8.(理)已知向量=(3,5,-1),=(2,2,3),=(4,-1,-3),則向量2-3+4的坐標(biāo)為()
A.(16,0,-23)
B.(28,0,-23)
C.(16,-4,-1)
D.(0,0,9)答案:A9.已知0<a<2,復(fù)數(shù)z的實(shí)部為a,虛部為1,則|z|的取值范圍是()A.(1,5)B.(1,3)C.(1,5)D.(1,3)答案:|z|=a2+1,而0<a<2,∴1<|z|<5,故選C.10.已知一個(gè)球與一個(gè)正三棱柱的三個(gè)側(cè)面和兩個(gè)底面相切,若這個(gè)球的體積是32π3,則這個(gè)三棱柱的體積是______.答案:由43πR3=32π3,得R=2.∴正三棱柱的高h(yuǎn)=4.設(shè)其底面邊長為a,則13?32a=2.∴a=43.∴V=34(43)2?4=483.故為:48311.下列輸入語句正確的是()
A.INPUT
x,y,z
B.INPUT“x=”;x,“y=”;y
C.INPUT
2,3,4
D.INPUT
x=2答案:A12.如圖所示,已知點(diǎn)P在正方體ABCD—A′B′C′D′的對角線
BD′上,∠PDA=60°.
(1)求DP與CC′所成角的大小;
(2)求DP與平面AA′D′D所成角的大小.答案:(1)DP與CC′所成的角為45°(2)DP與平面AA′D′D所成的角為30°解析:如圖所示,以D為原點(diǎn),DA為單位長度建立空間直角坐標(biāo)系D—xyz.則=(1,0,0),=(0,0,1).連接BD,B′D′.在平面BB′D′D中,延長DP交B′D′于H.設(shè)="(m,m,1)"(m>0),由已知〈,〉=60°,由·=||||cos〈,〉,可得2m=.解得m=,所以=(,,1).(1)因?yàn)閏os〈,〉==,所以〈,〉=45°,即DP與CC′所成的角為45°.(2)平面AA′D′D的一個(gè)法向量是=(0,1,0).因?yàn)閏os〈,〉==,所以〈,〉=60°,可得DP與平面AA′D′D所成的角為30°.13.下列圖形中不一定是平面圖形的是(
)
A.三角形
B.四邊相等的四邊形
C.梯形
D.平行四邊形答案:B14.已知△ABC是邊長為2a的正三角形,那么它的斜二側(cè)所畫直觀圖△A′B′C′的面積為()
A.a(chǎn)2
B.a(chǎn)2
C.a(chǎn)2
D.a(chǎn)2答案:C15.已知向量a,b,向量c=2a+b,且|a|=1,|b|=2,a與b的夾角為60°
(1)求|c|2;(2)若向量d=ma-b,且d∥c,求實(shí)數(shù)m的值.答案:(1)∵|a|=1,|b|=2,a和b的夾角為60°∴a?b=|a||b|cos60°=1∴|c|2=(
2a+b)2=4a2+4ab+b2=4+4+4=12(2)∵d∥c∴存在實(shí)數(shù)λ使得d=λc即ma-b=λ(2a+b)又∵a,b不共線∴2λ=m,λ=-1∴m=-216.△ABC中,,若,則m+n=()
A.
B.
C.
D.1答案:B17.設(shè)函數(shù)f(x)的定義域?yàn)镽,如果對任意的實(shí)數(shù)x,y都有f(x+y)=f(x)+f(y)成立,且f(2)=1,那么f(3)=______.答案:對任意的實(shí)數(shù)x,y都有f(x+y)=f(x)+f(y)成立,且f(2)=1,∴f(2)=2f(1)=1∴f(1)=12那么f(3)=f(2)+f(1)=1=12=32故為:3218.已知二項(xiàng)分布滿足X~B(6,23),則P(X=2)=______,EX=______.答案:∵X服從二項(xiàng)分布X~B(6,23)∴P(X=2)=C26(13)4(23)2=20243∵隨機(jī)變量ξ服從二項(xiàng)分布ξ~B(6,23),∴期望Eξ=np=6×23=4故為:20243;419.將n2個(gè)正整數(shù)1,2,3,…,n2填入n×n方格中,使得每行、每列、每條對角線上的數(shù)的和相等,這個(gè)正方形就叫做n階幻方.記f(n)為n階幻方對角線的和,如右表就是一個(gè)3階幻方,可知f(3)=15,則f(4)=()
816357492A.32B.33C.34D.35答案:由等差數(shù)列得前n項(xiàng)和公式可得,所有數(shù)之和S=1+2+3+…+42=16?(1+16)2=136,所以,f(4)=1364=34,故選C.20.在平行四邊形ABCD中,E和F分別是邊CD和BC的中點(diǎn),若AC=λAE+μAF,其中λ、μ∈R,則λ+μ=______.答案:解析:設(shè)AB=a,AD=b,那么AE=12a+b,AF=a+12b,又∵AC=a+b,∴AC=23(AE+AF),即λ=μ=23,∴λ+μ=43.故為:43.21.集合A={一條邊長為2,一個(gè)角為30°的等腰三角形},其中的元素個(gè)數(shù)為()A.2B.3C.4D.無數(shù)個(gè)答案:由題意,兩腰為2,底角為30°;兩腰為2,頂角為30°;底邊為2,底角為30°;底邊為2,頂角為30°.∴共4個(gè)元素,故選C.22.已知x=-3-2i(i為虛數(shù)單位)是一元二次方程x2+ax+b=0(a,b均為實(shí)數(shù))的一個(gè)根,則a+b=______.答案:∵x=-3-2i(i為虛數(shù)單位)是一元二次方程x2+ax+b=0(a,b均為實(shí)數(shù))的一個(gè)根,∴(-3-2i)2+a(-3-2i)+b=0,化為5-3a+b+(12-2a)i=0.根據(jù)復(fù)數(shù)相等即可得到5-3a+b=012-2a=0,解得a=6b=13.∴a+b=19.故為19.23.若A,B,C是直線存在實(shí)數(shù)x使得,實(shí)數(shù)x為()
A.-1
B.0
C.
D.答案:A24.正方體的內(nèi)切球和外接球的半徑之比為
A.:1
B.:2
C.2:
D.:3答案:D25.設(shè)i為虛數(shù)單位,若(x+i)(1-i)=y,則實(shí)數(shù)x,y滿足()
A.x=-1,y=1
B.x=-1,y=2
C.x=1,y=2
D.x=1,y=1答案:C26.拋物線x2+y=0的焦點(diǎn)位于()
A.y軸的負(fù)半軸上
B.y軸的正半軸上
C.x軸的負(fù)半軸上
D.x軸的正半軸上答案:A27.整數(shù)630的正約數(shù)(包括1和630)共有______個(gè).答案:首先將630分解質(zhì)因數(shù)630=2×32×5×7;然后注意到每一因數(shù)可出現(xiàn)的次冪數(shù),如2可有20,21兩種情況,3有30,31,32三種情況,5有50,51兩種情況,7有70,71兩種情況,按分步計(jì)數(shù)原理,整數(shù)630的正約數(shù)(包括1和630)共有2×3×2×2=24個(gè).故為:24.28.直線3x+4y-12=0和3x+4y+3=0間的距離是
______.答案:由兩平行線間的距離公式得直線3x+4y-12=0和3x+4y+3=0間的距離是|-12-3|5=3,故為3.29.賦值語句n=n+1的意思是()
A.n等于n+1
B.n+1等于n
C.將n的值賦給n+1
D.將n的值增加1,再賦給n,即n的值增加1答案:D30.已知空間三點(diǎn)的坐標(biāo)為A(1,5,-2),B(2,4,1),C(p,3,q+2),若A,B,C三點(diǎn)共線,則p=______,q=______.答案:∵A(1,5,-2),B(2,4,1),C(p,3,q+2),∴AB=(1,-1,3),AC=(p-1,-2,q+4)∵A,B,C三點(diǎn)共線,∴AB=λAC∴(1,-1,3)=λ(p-1,-2,q+4),∴1=λ(p-1)-1=-2λ,3=λ(q+4),∴λ=12,p=3,q=2,故為:3;231.定義在R上的二次函數(shù)y=f(x)在(0,2)上單調(diào)遞減,其圖象關(guān)于直線x=2對稱,則下列式子可以成立的是()
A.
B.
C.
D.答案:D32.已知x、y的取值如下表:x0134y2.24.34.86.7從散點(diǎn)圖分析,y與x線性相關(guān),且回歸方程為y=0.95x+a,則a=______.答案:點(diǎn)(.x,.y)在回歸直線上,計(jì)算得.x=2,.y=4.5;代入得a=2.6;故為2.6.33.已知F1,F(xiàn)2為橢圓x2a2+y2b2=1(a>b>0)的兩個(gè)焦點(diǎn),過F2作橢圓的弦AB,若△AF1B的周長為16,橢圓的離心率為e=32,則橢圓的方程為______.答案:根據(jù)橢圓的定義,△AF1B的周長為16可知,4a=16,∴a=4,∵e=32,∴c=23,∴b=2,∴橢圓的方程為x216+y24=1,故為x216+y24=134.
已知向量a,b的夾角為,且|a|=2,|b|=1,則向量a與向量2+2b的夾角等于()
A.
B.
C.
D.答案:D35.函數(shù)f(x)=x2+ax+3,
(1)若f(1-x)=f(1+x),求a的值;
(2)在第(1)的前提下,當(dāng)x∈[-2,2]時(shí),求f(x)的最值,并說明當(dāng)f(x)取最值時(shí)的x的值;
(3)若f(x)≥a恒成立,求a的取值范圍.答案:(1)∵f(1+x)=f(1-x)∴y=f(x)的圖象關(guān)于直線x=1對稱∴-a2=1即a=-2(2)a=-2時(shí),函數(shù)f(x)=x2-2x+3在區(qū)間[-2,1]上遞減,在區(qū)間[1,2]上遞增,∴當(dāng)x=-2時(shí),fmax(x)=f(-2)=11當(dāng)x=1時(shí),fmin(x)=f(1)=2(3)∵x∈R時(shí),有x2+ax+3-a≥0恒成立,須△=a2-4(3-a)≤0,即a2+4a-12≤0,所以-6≤a≤2.36.已知集合A={0,2,a2},B={1,a},若A∪B={0,1,2,4},則實(shí)數(shù)a的值為______.答案:根據(jù)題意,集合A={0,2,a2},B={1,a},且A∪B={0,1,2,4},則有a=4,或a=4,a=4時(shí),A={0,2,16},B={1,4},A∪B={0,1,2,4,16},不合題意,舍去;a=2時(shí),A={0,2,4},B={1,2},A∪B={0,1,2,4},符合;故a=2.37.直線l1:x+ay=2a+2與直線l2:ax+y=a+1平行,則a=______.答案:直線l1:x+ay=2a+2即x+ay-2a-2=0;直線l2:ax+y=a+1即ax+y-a-1=0,∵直線l1與直線l2互相平行∴當(dāng)a≠0且a≠-1時(shí),1a=a1≠-2a-2-a-1,解之得a=1當(dāng)a=0時(shí),兩條直線垂直;當(dāng)a=-1時(shí),兩條直線重合故為:138.教學(xué)大樓共有五層,每層均有兩個(gè)樓梯,由一層到五層的走法有()
A.10種
B.25種
C.52種
D.24種答案:D39.下列說法中正確的有()
①平均數(shù)不受少數(shù)幾個(gè)極端值的影響,中位數(shù)受樣本中的每一個(gè)數(shù)據(jù)影響;
②拋擲兩枚硬幣,出現(xiàn)“兩枚都是正面朝上”、“兩枚都是反面朝上”、“恰好一枚硬幣正面朝上”的概率一樣大
③用樣本的頻率分布估計(jì)總體分布的過程中,樣本容量越大,估計(jì)越準(zhǔn)確.
④向一個(gè)圓面內(nèi)隨機(jī)地投一個(gè)點(diǎn),如果該點(diǎn)落在圓內(nèi)任意一點(diǎn)都是等可能的,則該隨機(jī)試驗(yàn)的數(shù)學(xué)模型是古典概型.A.①②B.③C.③④D.④答案:中位數(shù)數(shù)不受少數(shù)幾個(gè)極端值的影響,平均數(shù)受樣本中的每一個(gè)數(shù)據(jù)影響,故①不正確,拋擲兩枚硬幣,出現(xiàn)“兩枚都是正面朝上”的概率是14“兩枚都是反面朝上的概率是14、“恰好一枚硬幣正面朝上的概率是12”,故②不正確,用樣本的頻率分布估計(jì)總體分布的過程中,樣本容量越大,估計(jì)越準(zhǔn)確.正確向一個(gè)圓面內(nèi)隨機(jī)地投一個(gè)點(diǎn),如果該點(diǎn)落在圓內(nèi)任意一點(diǎn)都是等可能的,則該隨機(jī)試驗(yàn)的數(shù)學(xué)模型是幾何概型,故④不正確,故選B.40.如圖,A地到火車站共有兩條路徑L1和L2,據(jù)統(tǒng)計(jì),通過兩條路徑所用的時(shí)間互不影響,所用時(shí)間落在各時(shí)間段內(nèi)的頻率如下表:所用時(shí)間(分鐘)10~2020~3030~4040~5050~60L1的頻率0.10.20.30.20.2L2的頻率00.10.40.40.1現(xiàn)甲、乙兩人分別有40分鐘和50分鐘時(shí)間用于趕往火車站.
(Ⅰ)為了盡最大可能在各自允許的時(shí)間內(nèi)趕到火車站,甲和乙應(yīng)如何選擇各自的路徑?
(Ⅱ)用X表示甲、乙兩人中在允許的時(shí)間內(nèi)能趕到火車站的人數(shù),針對(Ⅰ)的選擇方案,求X的分布列和數(shù)學(xué)期望.答案:(Ⅰ)Ai表示事件“甲選擇路徑Li時(shí),40分鐘內(nèi)趕到火車站”,Bi表示事件“乙選擇路徑Li時(shí),50分鐘內(nèi)趕到火車站”,i=1,2.用頻率估計(jì)相應(yīng)的概率可得∵P(A1)=0.1+0.2+0.3=0.6,P(A2)=0.1+0.4=0.5,∵P(A1)>P(A2)∴甲應(yīng)選擇LiP(B1)=0.1+0.2+0.3+0.2=0.8,P(B2)=0.1+0.4+0.4=0.9,∵P(B2)>P(B1),∴乙應(yīng)選擇L2.(Ⅱ)A,B分別表示針對(Ⅰ)的選擇方案,甲、乙在各自允許的時(shí)間內(nèi)趕到火車站,由(Ⅰ)知P(A)=0.6,P(B)=0.9,又由題意知,A,B獨(dú)立,P(X=0)=P(.A.B)=P(.A)P(.B)=0.4×0.1=0.04P(x=1)=P(.AB+A.B)=P(.A)P(B)+P(A)P(.B)=0.4×0.9+0.6×0.1=0.42P(X=2)=P(AB)=P(A)(B)=0.6×0.9=0.54X的分布列EX=0×0.04+1×0.42+2×0.54=1.5.41.已知一直線斜率為3,且過A(3,4),B(x,7)兩點(diǎn),則x的值為()
A.4
B.12
C.-6
D.3答案:A42.雙曲線x2-4y2=4的兩個(gè)焦點(diǎn)F1、F2,P是雙曲線上的一點(diǎn),滿足·=0,則△F1PF2的面積為()
A.1
B.
C.2
D.答案:A43.若以連續(xù)擲兩次骰子分別得到的點(diǎn)數(shù)m、n作為點(diǎn)P的坐標(biāo),則點(diǎn)P落在圓x2+y2=16內(nèi)的概率是______.答案:由題意知,本題是一個(gè)古典概型,試驗(yàn)發(fā)生包含的事件是連續(xù)擲兩次骰子分別得到的點(diǎn)數(shù)m、n作為點(diǎn)P的坐標(biāo),共有6×6=36種結(jié)果,而滿足條件的事件是點(diǎn)P落在圓x2+y2=16內(nèi),列舉出落在圓內(nèi)的情況:(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)(3,1)(3,2),共有8種結(jié)果,根據(jù)古典概型概率公式得到P=836=29,故為:2944.已知一個(gè)學(xué)生的語文成績?yōu)?9,數(shù)學(xué)成績?yōu)?6,外語成績?yōu)?9.求他的總分和平均成績的一個(gè)算法為:
第一步:取A=89,B=96,C=99;
第二步:______;
第三步:______;
第四步:輸出計(jì)算的結(jié)果.答案:由題意,第二步,求和S=A+B+C,第三步,計(jì)算平均成績.x=A+B+C3.故為:S=A+B+C;.x=A+B+C3.45.下列關(guān)于算法的說法不正確的是()A.算法必須在有限步操作之后停止.B.求解某一類問題的算法是唯一的.C.算法的每一步必須是明確的.D.算法執(zhí)行后一定產(chǎn)生確定的結(jié)果.答案:因?yàn)樗惴ň哂杏懈F性、確定性和可輸出性.由算法的特性可知,A是指的有窮性;C是確定性;D是可輸出性.而解決某一類問題的算法不一定唯一,例如求排序問題算法就不唯一,所以,給出的說法不正確的是B.故選B.46.已知在一個(gè)二階矩陣M對應(yīng)變換的作用下,點(diǎn)A(1,2)變成了點(diǎn)A′(7,10),點(diǎn)B(2,0)變成了點(diǎn)B′(2,4),求矩陣M.答案:設(shè)M=abcd,則abcd12=710,abcd20=24,(4分)即a+2b=7c+2d=102a=22c=4,解得a=1b=3c=2d=4(8分)所以M=1234.(10分)47.一位母親記錄了她的兒子3~9歲的身高數(shù)據(jù),并由此建立身高與年齡的回歸模型為y=7.19x+73.93,用這個(gè)模型預(yù)測她的兒子10歲時(shí)的身高,則正確的敘述是()A.身高一定是145.83
cmB.身高在145.83
cm以上C.身高在145.83
cm左右D.身高在145.83
cm以下答案:∵身高與年齡的回歸模型為y=7.19x+73.93.∴可以預(yù)報(bào)孩子10歲時(shí)的身高是y=7.19x+73.93.=7.19×10+73.93=145.83則她兒子10歲時(shí)的身高在145.83cm左右.故選C.48.寫出按從小到大的順序重新排列x,y,z三個(gè)數(shù)值的算法.答案:算法如下:(1).輸入x,y,z三個(gè)數(shù)值;(2).從三個(gè)數(shù)值中挑出最小者并換到x中;(3).從y,z中挑出最小者并換到y(tǒng)中;(4).輸出排序的結(jié)果.49.設(shè)直角三角形的三邊長分別為a,b,c(a<b<c),則“a:b:c=3:4:5”是“a,b,c成等差數(shù)列”的()A.充分非必要條件B.必要非充分條件C.充分必要條件D.既非充分又非必要條件答案:∵直角三角形的三邊長分別為a,b,c(a<b<c),a:b:c=3:4:5,∴a=3k,b=4k,c=5k(k>0),∴a,b,c成等差數(shù)列.即“a:b:c=3:4:5”?“a,b,c成等差數(shù)列”.∵直角三角形的三邊長分別為a,b,c(a<b<c),a,b,c成等差數(shù)列,∴a2+b2=c22b=a+c,∴a2+a2+
c2+2ac4=c2,∴4a=3b,5a=3c,∴a:b:c=3:4:5,即“a,b,c成等差數(shù)列”?“a:b:c=3:4:5”.故選C.50.(x+1)4的展開式中x2的系數(shù)為()A.4B.6C.10D.20答案:(x+1)4的展開式的通項(xiàng)為Tr+1=C4rxr令r=2得T3=C42x2=6x∴展開式中x2的系數(shù)為6故選項(xiàng)為B第3卷一.綜合題(共50題)1.在曲線(t為參數(shù))上的點(diǎn)是()
A.(1,-1)
B.(4,21)
C.(7,89)
D.答案:A2.用反證法證明命題“若a、b∈N,ab能被2整除,則a,b中至少有一個(gè)能被2整除”,那么反設(shè)的內(nèi)容是______.答案:根據(jù)用反證法證明數(shù)學(xué)命題的步驟,應(yīng)先假設(shè)要證命題的否定成立,而要證命題的否定為:“a,b都不能被2整除”,故為:a、b都不能被2整除.3.如圖,已知某探照燈反光鏡的縱切面是拋物線的一部分,光源安裝在焦點(diǎn)F上,且燈的深度EG等于燈口直徑AB,若燈的深度EG為64cm,則光源安裝的位置F到燈的頂端G的距離為______cm.答案:以反射鏡頂點(diǎn)為原點(diǎn),以頂點(diǎn)和焦點(diǎn)所在直線為x軸,建立直角坐標(biāo)系.設(shè)拋物線方程為y2=2px,依題意可點(diǎn)A(64,32)在拋物線上代入拋物線方程得322=128p解得p=8∴焦點(diǎn)坐標(biāo)為(4,0),而光源到反射鏡頂點(diǎn)的距離正是拋物線的焦距,即4cm.故為:4.4.如圖1,一個(gè)“半圓錐”的主視圖是邊長為2的正三角形,左視圖是直角三角形,俯視圖是半圓及其圓心,這個(gè)幾何體的體積為()A.33πB.36πC.23πD.3π答案:由已知中“半圓錐”的主視圖是邊長為2的正三角形,左視圖是直角三角形,俯視圖是半圓及其圓心,我們可以判斷出底面的半徑為1,母線長為2,則半圓錐的高為3故V=13×12×π×3=36π故選B5.若a=()x,b=x3,c=logx,則當(dāng)x>1時(shí),a,b,c的大小關(guān)系式()
A.a(chǎn)<b<c
B.c<b<a
C.c<a<b
D.a(chǎn)<c<b答案:C6.執(zhí)行如圖的程序框圖,若p=15,則輸出的n=______.答案:當(dāng)n=1時(shí),S=2,n=2;當(dāng)n=2時(shí),S=6,n=3;當(dāng)n=3時(shí),S=14,n=4;當(dāng)n=4時(shí),S=30,n=5;故最后輸出的n值為5故為:57.在直角坐標(biāo)系中,x=-1+3cosθy=2+3sinθ,θ∈[0,2π],所表示曲線的解析式是:______.答案:由題意并根據(jù)cos2θ+sin2θ=1
可得,(x+13)2+(y-23)2=1,即(x+1)2+(y-2)2=9,故為(x+1)2+(y-2)2=9.解析:在直角坐標(biāo)系中,8.在△ABC中,“A=45°”是“sinA=22”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件答案:當(dāng)A=45°時(shí),sinA=22成立.若當(dāng)A=135°時(shí),滿足sinA=22.所以,“A=45°”是“sinA=22”的充分不必要條件.故選A.9.設(shè)a=log
132,b=log123,c=(12)0.3,則()A.a(chǎn)<b<cB.a(chǎn)<c<bC.b<c<aD.b<a<c答案:c=(12)0.3>0,a=log
132<0,b=log123
<0并且log
132>log133,log
133>log123所以c>a>b故選D.10.由直角△ABC勾上一點(diǎn)D作弦AB的垂線交弦于E,交股的延長線于F,交外接圓于G,求證:EG為EA和EB的比例中項(xiàng),又為ED和EF的比例中項(xiàng).
答案:證明:連接GA、GB,則△AGB也是一個(gè)直角三角形,因?yàn)镋G為直角△AGB的斜邊AB上的高,所以,EG為EA和EB的比例中項(xiàng),即EG2=EA?EB∵∠AFE=∠ABC,∴直角△AEF∽直角△DEB,EAEF=EDEB即EA?EB=ED?EF.又∵EG2=EA?EB,∴EG2=ED?EF(等量代換),故EG也是ED和EF的比例中項(xiàng).11.如圖,曲線C1、C2、C3分別是函數(shù)y=ax、y=bx、y=cx的圖象,則()
A.a(chǎn)<b<c
B.a(chǎn)<c<B
C.c<b<a
D.b<c<a
答案:C12.直線x=1和函數(shù)y=f(x)的圖象的公共點(diǎn)的個(gè)數(shù)為______.答案:由函數(shù)定義知當(dāng)函數(shù)在x=1處有定義時(shí),直線x=1和函數(shù)y=f(x)的圖象的公共點(diǎn)的個(gè)數(shù)為1,若函數(shù)在x=1處有無定義時(shí),直線x=1和函數(shù)y=f(x)的圖象的公共點(diǎn)的個(gè)數(shù)為0故線x=1和函數(shù)y=f(x)的圖象的公共點(diǎn)的個(gè)數(shù)為0或1故為0或113.設(shè)雙曲線的漸近線為:y=±32x,則雙曲線的離心率為______.答案:由題意ba=32或ab=32,∴e=ca=132或133,故為132,133.14.在平面幾何中,四邊形的分類關(guān)系可用以下框圖描述:
則在①中應(yīng)填入______;在②中應(yīng)填入______.答案:由題意知①對應(yīng)的四邊形是一個(gè)有一組鄰邊相等的平行四邊形,∴這里是一個(gè)菱形,②處的圖形是一個(gè)有一條腰和底邊垂直的梯形,∴②處是一個(gè)直角梯形,故為:菱形;直角梯形.15.(幾何證明選講選做題)如圖,⊙O中,直徑AB和弦DE互相垂直,C是DE延長線上一點(diǎn),連接BC與圓0交于F,若∠CFE=α(α∈(0,π2)),則∠DEB______.答案:∵直徑AB和弦DE互相垂直∴AB平分DE∴BD=BE,∠D=∠BED∵DEFB四點(diǎn)共圓∴∠EFC=∠D=α∴∠DEB=α故為:α16.半徑為R的球內(nèi)接一個(gè)正方體,則該正方體的體積為()A.22RB.4π3R3C.893R3D.193R3答案:∵半徑為R的球內(nèi)接一個(gè)正方體,設(shè)正方體棱長為a,正方體的對角線過球心,可得正方體對角線長為:a2+a2+a2=2R,可得a=2R3,∴正方體的體積為a3=(2R3)3=83R39,故選C;17.已知α、β均為銳角,若p:sinα<sin(α+β),q:α+β<π2,則p是q的()A.充分而不必要條件B.必要而不充分條件C.充要條件D.既不充分也不必要條件答案:當(dāng)sinα<sin(α+β)時(shí),α+β<π2不一定成立故sinα<sin(α+β)?α+β<π2,為假命題;而若α+β<π2,則由正弦函數(shù)在(0,π2)單調(diào)遞增,易得sinα<sin(α+β)成立即α+β<π2?sinα<sin(α+β)為真命題故p是q的必要而不充分條件故選B.18.雙曲線x29-y216=1的兩個(gè)焦點(diǎn)為F1、F2,點(diǎn)P在雙曲線上,若PF1⊥PF2,則點(diǎn)P到x軸的距離為______.答案:設(shè)點(diǎn)P(x,y),∵F1(-5,0)、F2(5,0),PF1⊥PF2,∴y-0x+5?y-0x-5=-1,∴x2+y2=25
①,又x29-y216=1,∴25-y29-y216=1,∴y2=16225,∴|y|=165,∴P到x軸的距離是165.19.構(gòu)成多面體的面最少是()
A.三個(gè)
B.四個(gè)
C.五個(gè)
D.六個(gè)答案:B20.已知向量a與向量b,|a|=2,|b|=3,a、b的夾角為60°,當(dāng)1≤m≤2,0≤n≤2時(shí),|ma+nb|的最大值為______.答案:∵|a|=2,|b|=3,a、b的夾角為60°,∴|ma+nb|2=m2a2+2mna?b+n2b2=4m2+2mn×2×3×cos60°+9n2=4m2+6mn+9n2,∵1≤m≤2,0≤n≤2,∴當(dāng)m=2且n=2時(shí),|ma+nb|2取到最大值,即|ma+nb|2max=100,∴,|ma+nb|的最大值為10.故為:10.21.如圖,已知AP是⊙O的切線,P為切點(diǎn),AC是⊙O的割線,與⊙O交于B,C兩點(diǎn),圓心O在∠PAC的內(nèi)部,點(diǎn)M是BC的中點(diǎn).
(Ⅰ)證明A,P,O,M四點(diǎn)共圓;
(Ⅱ)求∠OAM+∠APM的大?。鸢福鹤C明:(Ⅰ)連接OP,OM.因?yàn)锳P與⊙O相切于點(diǎn)P,所以O(shè)P⊥AP.因?yàn)镸是⊙O的弦BC的中點(diǎn),所以O(shè)M⊥BC.于是∠OPA+∠OMA=180°.由圓心O在∠PAC的內(nèi)部,可知四邊形M的對角互補(bǔ),所以A,P,O,M四點(diǎn)共圓.(Ⅱ)由(Ⅰ)得A,P,O,M四點(diǎn)共圓,所以∠OAM=∠OPM.由(Ⅰ)得OP⊥AP.由圓心O在∠PAC的內(nèi)部,可知∠OPM+∠APM=90°.又∵A,P,O,M四點(diǎn)共圓∴∠OPM=∠OAM所以∠OAM+∠APM=90°.22.在四邊形ABCD中有AC=AB+AD,則它的形狀一定是______.答案:由向量加法的平行四邊形法則及AC=AB+AD,知四邊形ABCD為平行四邊形,故為:平行四邊形.23.已知a=(5,4),b=(3,2),則與2a-3b同向的單位向量為
______.答案:∵a=(5,4),b=(3,2),∴2a-3b=(1,2)設(shè)與2a-3b平行的單位向量為e=(x,y),則2a-3b=λe,|e|=1∴(1,2)=(λx,λy);x2+y2=1∴1=λx2=λyx2+y2=1解之x=55y=255或x=-55y=-255故為e=±(55,255)24.設(shè)點(diǎn)O(0,0,0),A(1,-2,3),B(-1,2,3),C(1,2,-3),則OA?BC=______.答案:因?yàn)辄c(diǎn)O(0,0,0),A(1,-2,3),B(-1,2,3),C(1,2,-3),所以O(shè)A=(1,-2,3),BC=(2,0,-6),OA?BC=(1,-2,3)?(2,0,-6)=2-18=-16.故為:-16.25.命題“若a,b都是奇數(shù),則a+b是偶數(shù)”的逆否命題是()A.若a+b不是偶數(shù),則a,b都不是奇數(shù)B.若a+b不是偶數(shù),則a,b不都是奇數(shù)C.若a+b是偶數(shù),則a,b都是奇數(shù)D.若a+b是偶數(shù),則a,b不都是奇數(shù)答案:“a,b都是奇數(shù)”的否定是“a,b不都是奇數(shù)”,“a+b是偶數(shù)”的否定是“a+b不是偶數(shù)”,故命題“若a,b都是奇數(shù),則a+b是偶數(shù)”的逆否命題是“若a+b不是偶數(shù),則a,b不都是奇數(shù)”.故選B.26.已知m,n為正整數(shù).
(Ⅰ)用數(shù)學(xué)歸納法證明:當(dāng)x>-1時(shí),(1+x)m≥1+mx;
(Ⅱ)對于n≥6,已知(1-1n+3)n<12,求證(1-mn+3)n<(12)m,m=1,2…,n;
(Ⅲ)求出滿足等式3n+4n+5n+…+(n+2)n=(n+3)n的所有正整數(shù)n.答案:解法1:(Ⅰ)證:用數(shù)學(xué)歸納法證明:當(dāng)x=0時(shí),(1+x)m≥1+mx;即1≥1成立,x≠0時(shí),證:用數(shù)學(xué)歸納法證明:(?。┊?dāng)m=1時(shí),原不等式成立;當(dāng)m=2時(shí),左邊=1+2x+x2,右邊=1+2x,因?yàn)閤2≥0,所以左邊≥右邊,原不等式成立;(ⅱ)假設(shè)當(dāng)m=k時(shí),不等式成立,即(1+x)k≥1+kx,則當(dāng)m=k+1時(shí),∵x>-1,∴1+x>0,于是在不等式(1+x)k≥1+kx兩邊同乘以1+x得(1+x)k?(1+x)≥(1+kx)(1+x)=1+(k+1)x+kx2≥1+(k+1)x,所以(1+x)k+1≥1+(k+1)x.即當(dāng)m=k+1時(shí),不等式也成立.綜合(?。áⅲ┲?,對一切正整數(shù)m,不等式都成立.(Ⅱ)證:當(dāng)n≥6,m≤n時(shí),由(Ⅰ)得(1-1n+3)m≥1-mn+3>0,于是(1-mn+3)n≤(1-1n+3)nm=[(1-1n+3)n]m<(12)m,m=1,2,n.(Ⅲ)由(Ⅱ)知,當(dāng)n≥6時(shí),(1-1n+3)n+(1-2n+3)n++(1-nn+3)n<12+(12)^++(12)n=1-12n<1,∴(n+2n+3)n+(n+1n+3)n++(3n+3)n<1.即3n+4n+…+(n+2)n<(n+3)n.即當(dāng)n≥6時(shí),不存在滿足該等式的正整數(shù)n.故只需要討論n=1,2,3,4,5的情形:當(dāng)n=1時(shí),3≠4,等式不成立;當(dāng)n=2時(shí),32+42=52,等式成立;當(dāng)n=3時(shí),33+43+53=63,等式成立;當(dāng)n=4時(shí),34+44+54+64為偶數(shù),而74為奇數(shù),故34+44+54+64≠74,等式不成立;當(dāng)n=5時(shí),同n=4的情形可分析出,等式不成立.綜上,所求的n只有n=2,3.解法2:(Ⅰ)證:當(dāng)x=0或m=1時(shí),原不等式中等號顯然成立,下用數(shù)學(xué)歸納法證明:當(dāng)x>-1,且x≠0時(shí),m≥2,(1+x)m>1+mx.①(?。┊?dāng)m=2時(shí),左邊=1+2x+x2,右邊=1+2x,因?yàn)閤≠0,所以x2>0,即左邊>右邊,不等式①成立;(ⅱ)假設(shè)當(dāng)m=k(k≥2)時(shí),不等式①成立,即(1+x)k>1+kx,則當(dāng)m=k+1時(shí),因?yàn)閤>-1,所以1+x>0.又因?yàn)閤≠0,k≥2,所以kx2>0.于是在不等式(1+x)k>1+kx兩邊同乘以1+x得(1+x)k?(1+x)>(1+kx)(1+x)=1+(k+1)x+kx2>1+(k+1)x,所以(1+x)k+1>1+(k+1)x.即當(dāng)m=k+1時(shí),不等式①也成立.綜上所述,所證不等式成立.(Ⅱ)證:當(dāng)n≥6,m≤n時(shí),∵(1-1n+3)n<12,∴[(1-1n+3)m]n<(12)m,而由(Ⅰ),(1-1n+3)m≥1-mn+3>0,∴(1-mn+3)n≤[(1-1n+3)m]n<(12)m.(Ⅲ)假設(shè)存在正整數(shù)n0≥6使等式3n0+4n0++(n0+2)n0=(n0+3)n0成立,即有(3n0+3)n0+(4n0+3)n0++(n0+2n0+3)n0=1.②又由(Ⅱ)可得(3n0+3)n0+(4n0+3)n0++(n0+2n0+3)n0=(1-n0n0+3)n0+(1-n0-1n0+3)n0++(1-1n0+3)n0<(12)n0+(12)n0-1++12=1-12n0<1,與②式矛盾.故當(dāng)n≥6時(shí),不存在滿足該等式的正整數(shù)n.下同解法1.27.與直線3x+4y-3=0平行,并且距離為3的直線方程為______.答案:設(shè)所求直線上任意一點(diǎn)P(x,y),由題意可得點(diǎn)P到所給直線的距離等于3,即|3x+4y-3|5=3,∴|3x+4y-3|=15,∴3x+4y-3=±15,即3x+4y-18=0或3x+4y+12=0.故為3x+4y-18=0或3x+4y+12=0.28.已知雙曲線x2-y22=1,經(jīng)過點(diǎn)M(1,1)能否作一條直線l,使直線l與雙曲線交于A、B,且M是線段AB的中點(diǎn),若存在這樣的直線l,求出它的方程;若不存在,說明理由.答案:設(shè)過點(diǎn)M(1,1)的直線方程為y=k(x-1)+1或x=1(1)當(dāng)k存在時(shí)有y=k(x-1)+1x2
-y22=1得(2-k2)x2+(2k2-2k)x-k2+2k-3=0
(1)當(dāng)直線與雙曲線相交于兩個(gè)不同點(diǎn),則必有△=(2k2-2k)2-4(2-k2)(-k2+2k-3)>0,k<32
又方程(1)的兩個(gè)不同的根是兩交點(diǎn)A、B的橫坐標(biāo)∴x1+x2=2(k-k2)2-k2
又M(1,1)為線段AB的中點(diǎn)∴x1+x22=1
即k-k22-k2=1
k=2
∴k=2,使2-k2≠0但使△<0因此當(dāng)k=2時(shí),方程(1)無實(shí)數(shù)解故過點(diǎn)m(1,1)與雙曲線交于兩點(diǎn)A、B且M為線段AB中點(diǎn)的直線不存在.(2)當(dāng)x=1時(shí),直線經(jīng)過點(diǎn)M但不滿足條件,綜上,符合條件的直線l不存在29.下面四個(gè)結(jié)論:
①偶函數(shù)的圖象一定與y軸相交;
②奇函數(shù)的圖象一定通過原點(diǎn);
③偶函數(shù)的圖象關(guān)于y軸對稱;
④既是奇函數(shù)又是偶函數(shù)的函數(shù)一定是f(x)=0(x∈R),
其中正確命題的個(gè)數(shù)是()A.1B.2C.3D.4答案:偶函數(shù)的圖象關(guān)于y軸對稱,但不一定與y軸相交,因此①錯(cuò)誤,③正確;奇函數(shù)的圖象關(guān)于原點(diǎn)對稱,但不一定經(jīng)過原點(diǎn),只有在原點(diǎn)處有定義才通過原點(diǎn),因此②錯(cuò)誤;若y=f(x)既是奇函數(shù),又是偶函數(shù),由定義可得f(x)=0,但不一定x∈R,只要定義域關(guān)于原點(diǎn)對稱即可,因此④錯(cuò)誤.故選A.30.若向量a,b,c滿足a∥b且a⊥c,則c(a+2b)=______.答案:∵a∥b∴存在λ使b=λa∵a⊥c∴a?c=0∴c?(a+2b)=c?a+2c?b=2c?λa=0故為:0.31.若下列算法的程序運(yùn)行的結(jié)果為S=132,那么判斷框中應(yīng)填入的關(guān)于k的判斷條件是
______.答案:本題考查根據(jù)程序框圖的運(yùn)算,寫出控制條件按照程序框圖執(zhí)行如下:s=1
k=12s=12
k=11s=12×11=132
k=10因?yàn)檩敵?32故此時(shí)判斷條件應(yīng)為:K≤10或K<11故為:K≤10或K<1132.若0<x<1,則2x,(12)x,(0.2)x之間的大小關(guān)系為()A.2x<(0.2)x<(12)xB.2x<(12)x<(0.2)xC.(12)x<(0.2)x<2xD.(0.2)x<(12)x<2x答案:由題意考察冪函數(shù)y=xn(0<n<1),利用冪函數(shù)的性質(zhì),∵0<n<1,∴冪函數(shù)y=xn在第一象限是增函數(shù),又2>12>0.2∴2x>(12)x>(0.2)x故選D33.在用樣本頻率估計(jì)總體分布的過程中,下列說法正確的是()A.總體容量越大,估計(jì)越精確B.總體容量越小,估計(jì)越精確C.樣本容量越大,估計(jì)越精確D.樣本容量越小,估計(jì)越精確答案:∵用樣本頻率估計(jì)總體分布的過程中,估計(jì)的是否準(zhǔn)確與總體的數(shù)量無關(guān),只與樣本容量在總體中所占的比例有關(guān),∴樣本容量越大,估計(jì)的月準(zhǔn)確,故選C.34.已知D、E、F分別是△ABC的邊BC、CA、AB的中點(diǎn),且,則下列命題中正確命題的個(gè)數(shù)為(
)
①;
②
③;
④
A.1
B.2
C.3
D.4
答案:C35.如圖,在Rt△ABC中,已知∠ABC=90°,BC=6,以AB為直徑作⊙O,連接OC,過點(diǎn)C作⊙O的切線CD,D為切點(diǎn),若sin∠OCD=45,則直徑AB=______.答案:連接OD,則OD⊥CD.∵∠ABC=90°,∴CD、CB為⊙O的兩條切線.∴根據(jù)切線長定理得:CD=BC=6.在Rt△OCD中,sin∠OCD=45,∴tan∠OCD=43,OD=tan∠OCD×CD=8.∴AB=2OD=16.故為16.36.意大利數(shù)學(xué)家菲波拉契,在1202年出版的一書里提出了這樣的一個(gè)問題:一對兔子飼養(yǎng)到第二個(gè)月進(jìn)入成年,第三個(gè)月生一對小兔,以后每個(gè)月生一對小兔,所生小兔能全部存活并且也是第二個(gè)月成年,第三個(gè)月生一對小兔,以后每月生一對小兔.問這樣下去到年底應(yīng)有多少對兔子?試畫出解決此問題的程序框圖,并編寫相應(yīng)的程序.答案:見解析解析:解:根據(jù)題意可知,第一個(gè)月有對小兔,第二個(gè)月有對成年兔子,第三個(gè)月有兩對兔子,從第三個(gè)月開始,每個(gè)月的兔子對數(shù)是前面兩個(gè)月兔子對數(shù)的和,設(shè)第個(gè)月有對兔子,第個(gè)月有對兔子,第個(gè)月有對兔子,則有,一個(gè)月后,即第個(gè)月時(shí),式中變量的新值應(yīng)變第個(gè)月兔子的對數(shù)(的舊值),變量的新值應(yīng)變?yōu)榈趥€(gè)月兔子的對數(shù)(的舊值),這樣,用求出變量的新值就是個(gè)月兔子的數(shù),依此類推,可以得到一個(gè)數(shù)序列,數(shù)序列的第項(xiàng)就是年底應(yīng)有兔子對數(shù),我們可以先確定前兩個(gè)月的兔子對數(shù)均為,以此為基準(zhǔn),構(gòu)造一個(gè)循環(huán)程序,讓表示“第×個(gè)月的從逐次增加,一直變化到,最后一次循環(huán)得到的就是所求結(jié)果.流程圖和程序如下:S=1Q=1I=3WHILE
I<=12F=S+QQ=SS=FI=I+1WENDPRINT
FEND37.已知x2+4y2+kz2=36,(其中k>0)且t=x+y+z的最大值是7,則
k=______.答案:因?yàn)橐阎獂2+4y2+kz2=36根據(jù)柯西不等式(ax+by+cz)2≤(a2+b2+c2)(x2+y2+z2)構(gòu)造得:即(x+y+z)2≤(x2+4y2+kz2)(12+(12)2+(1k)2)=36×[12+(12)2+(1k)2]=49.故k=9.故為:9.38.已知x∈{1,2,x2},則實(shí)數(shù)x=______.答案:∵x∈{1,2,x2},分情況討論可得:①x=1此時(shí)集合為{1,2,1}不合題意②x=2此時(shí)集合為{1,2,4}合題意③x=x2解得x=0或x=1當(dāng)x=0時(shí)集合為{1,2,0}合題意故為0或2.39.設(shè)U={(x,y)|x2+y2≤1,x,y∈R},M={(x,y)|x|+|y|≤1,x,y∈R},現(xiàn)有一質(zhì)點(diǎn)隨機(jī)落入?yún)^(qū)域U中,則質(zhì)點(diǎn)落入M中的概率是()A.2πB.12πC.1πD.2π答案:滿足條件U={(x,y)|x2+y2≤1,x,y∈R}的圓,如下圖示:其中滿足條件M={(x,y)|x|+|y|≤1,x,y∈R}的平面區(qū)域如圖中陰影所示:則圓的面積S圓=π陰影部分的面積S陰影=2故質(zhì)點(diǎn)落入M中的概率概率P=S陰影S正方形=2π故選D40.已知兩組樣本數(shù)據(jù)x1,x2,…xn的平均數(shù)為h
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 裝修公司瓷磚合同范例
- 廠房銷售協(xié)議3篇
- 凈化施工合同的合同解除3篇
- 拆遷租賃機(jī)械合同范例
- 天貓進(jìn)貨合同范例
- 武漢商貿(mào)職業(yè)學(xué)院《經(jīng)典廣告案例分析》2023-2024學(xué)年第一學(xué)期期末試卷
- 武漢軟件工程職業(yè)學(xué)院《酒水經(jīng)營管理》2023-2024學(xué)年第一學(xué)期期末試卷
- 購銷合同是合同范例
- 擔(dān)保工合同范例
- 精簡轉(zhuǎn)租攤位合同范例
- 人教版數(shù)學(xué)小學(xué)二年級上冊無紙筆測試題
- 小學(xué)科學(xué)實(shí)驗(yàn)圖片和文字
- 項(xiàng)目總監(jiān)簡歷模板
- 拉薩硫氧鎂凈化板施工方案
- 施工單位自查自糾記錄表
- 產(chǎn)品合格證出廠合格證A4打印模板
- IEC60287中文翻譯版本第一部分課件
- 《公路隧道設(shè)計(jì)細(xì)則》(D70-2010 )【可編輯】
- 東南大學(xué)高數(shù)實(shí)驗(yàn)報(bào)告
- 農(nóng)業(yè)開發(fā)有限公司章程范本
- 化工企業(yè)隱患排查與治理
評論
0/150
提交評論